Python 日志模块Loguru基本使用和封装使用

2024-05-12 02:20

本文主要是介绍Python 日志模块Loguru基本使用和封装使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【一】介绍

  • Loguru是一个用于Python的日志库,它的设计目标是使日志记录变得简单、快速且易于阅读。

(1)Loguru介绍

  • 简洁的API:Loguru提供了一个简洁的API,使得在Python项目中使用日志变得更加容易。只需导入loguru模块,然后使用其提供的函数来记录日志。
  • 自动格式化:Loguru会自动将日志消息格式化为带有时间戳、日志级别和消息内容的字符串,无需手动处理。这使得在查看日志时可以轻松地识别出每条日志的时间和级别。
  • 多种输出方式:Loguru支持将日志输出到控制台、文件、Slack、GitHub等不同的地方。可以根据需要选择合适的输出方式,并设置不同的日志级别以关注重要信息。
  • 配置文件支持:Loguru允许使用JSON格式的配置文件来自定义日志记录的行为,轻松地为应用程序添加自定义的日志处理器或过滤器。
  • 异常追踪:Loguru可以自动捕获和记录异常信息,并将其与日志消息一起输出,使调试和排查问题更加方便。
  • 彩色输出支持:Loguru支持在控制台输出中添加颜色,使日志更易于阅读和区分。
  • 装饰器集成:Loguru提供了日志装饰器,可以直接在函数或类上应用,避免在每个可能产生日志的地方插入日志语句。

(2)Loguru与logging的区别和优势

  • 简洁性:与logging相比,Loguru的API更加简洁易用。
  • 自动化:Loguru提供了许多自动化的功能,如自动格式化、异常追踪和彩色输出等。
  • 灵活性:Loguru支持多种输出方式和自定义方式,如控制台、文件、Slack、GitHub等输出目标,以及自定义日志格式、颜色编码、文件记录等。
  • 高效性:Loguru使用了异步I/O技术,可以提高日志记录的效率。

【二】使用

(1)简单使用

  • 安装
pip install loguru
  • 示例

    • from loguru import logger# 添加一个文件输出目标
      logger.add('my_file_log.log')
      # 记录一条日志,它将同时输出到控制台和文件
      logger.info('这是一条info级别日志')
      logger.warning('这是一条warning级别日志')
      logger.error('这是一条error级别日志')
      logger.critical('这是一条critical级别日志')
      logger.debug('这是一条debug级别日志')
    • image-20240510192546907

  • 说明

    • logger.add()方法添加了一个文件输出目标,指定了日志文件的名称(my_log_file.log
    • logger对象的不同方法(如info(), warning(), error(), critical(), debug())来记录不同级别的日志消息。
      • 除了debug,他们的测试等级依次增加

(2)add方法

  • 源码

    • class Logger:@overloaddef add(self,sink: Union[TextIO, Writable, Callable[[Message], None], Handler],*,level: Union[str, int] = ...,format: Union[str, FormatFunction] = ...,filter: Optional[Union[str, FilterFunction, FilterDict]] = ...,colorize: Optional[bool] = ...,serialize: bool = ...,backtrace: bool = ...,diagnose: bool = ...,enqueue: bool = ...,context: Optional[Union[str, BaseContext]] = ...,catch: bool = ...
      
  • sink:

    • 这是指定日志输出的地方,可以是一个文件名、文件对象、标准输出(例如 sys.stderrsys.stdout)、一个URL(如向Slack发送消息)等。

    • logger.add("my_file_log.log")  # 输出到my_file_log.log文件  
      logger.add(sys.stdout)  # 输出到标准输出
      
  • level:

    • 用于指定日志级别。如果指定了级别,则只有该级别及以上的日志才会被输出到该sink。如果不指定,则使用全局级别

    • logger.add("my_file_log.log", level="INFO")  # 只记录INFO级别及以上的日志
      
  • format:

    • 用于定义日志的格式。这是一个字符串,可以使用各种占位符来自定义输出格式。

    • logger.add("my_file_log.log", format="{time} {level} {message}")
      
    • 可填参数

      • 占位符描述
        %(asctime)s日志事件发生的时间
        %(levelname)s日志级别名称
        %(message)s日志消息,传递给logger方法的字符串
        %(name)s用于记录日志的logger的名称
        %(pathname)s调用日志记录方法的源文件的完整路径名
        %(filename)s调用日志记录方法的源文件的文件名。
        %(module)s调用日志记录方法的模块名
        %(process)d进程ID
        %(thread)d线程ID(可能不是所有平台都可用)
        %(threadName)s线程名(可能不是所有平台都可用)
        %(lineno)d调用日志记录方法的源代码行号
        %(funcName)s调用日志记录方法的函数名
        %(processName)s进程名
      • import logging  logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')  
        logger = logging.getLogger(__name__)  
        logger.info('This is an info message.')
        
    • 如何指定时间格式

      • 日志内容信息只保留年月日信息,十分秒不要

        • from loguru import logger  # 自定义时间格式,仅包含年、月、日  
          format_string = "{time:YYYY-MM-DD} | {level} | {message}"  # 添加一个日志输出配置,指定时间格式  
          logger.add(sink="my_file_log.log", format=format_string)  logger.info("这是一条日志消息")
          
      • 日志文件名字带有时间,带有年月日

        • from loguru import logger# 添加一个文件输出目标
          logger.add('my_file_log{time:YYYY-MM-DD}.log')
          # 记录一条日志,它将同时输出到控制台和文件
          logger.info('这是一条info级别日志')xxxxxxxxxx from loguru import logger# 添加一个文件输出目标logger.add('my_file_log{time:YYYY-MM-DD}.log')# 记录一条日志,它将同时输出到控制台和文件logger.info('这是一条info级别日志')
          
  • filter:

    • 可选的函数或条件表达式,用于决定是否输出日志。如果提供了 filter,则只有满足该 filter 条件的日志才会被输出到该sink。

    • def filter_fn(record):  # 返回布尔值,记录的级别不是DEBUG就返回Truereturn record["level"].name != "DEBUG"  logger.add("my_file_log.log", filter=filter_fn)  # 不记录DEBUG级别的日志
      
  • colorize:

    • 用于指定是否对日志消息进行颜色编码(布尔值)。默认为True,控制台输出是颜色编码的,但文件输出不是。

    • logger.add("my_file_log.log", colorize=True) 
      
  • serialize:

    • 默认为False,如果为True,则日志消息会被序列化为JSON格式。这对于非文本输出(如发送到Elasticsearch)很有用。

    • logger.add("my_file_log.log", serialize=True
    • image-20240510194018859

  • enqueue:

    • 默认为False,如果为True,则日志调用是异步的,并通过内部队列进行处理。这可以提高性能,特别是在高负载下。

    • logger.add("my_file_log.log", enqueue=True)
      
  • rotation:

    • 用于文件输出的日志轮转设置。可以基于文件大小(如 "5 MB")或时间间隔(如 "1 week")进行轮转。

    • logger.add("my_file_log.log", rotation="1 week")  # 每周轮转一次
      logger.add("my_file_log.log", rotation="5MB")  # 每到5MB就轮转一次
      
  • retention:

    • 指定日志文件的保留时长,超过这个时长的日志文件将被自动删除。

    • logger.add("my_file_log.log", retention="10 days")  # 保留10天的日志文件
      
  • compression:

    • 用于指定日志文件的压缩格式,如 "zip"

    • logger.add("my_file_log", compression="zip")
      
  • backtrace:

    • 默认为False,如果为True,则在记录错误级别的日志时自动添加回溯信息。

    • logger.add("with_backtrace.log", backtrace=True, level="ERROR")
      

(3)装饰器中的应用

  • 再装饰器可以使用记录日志功能,这样只使用了该装饰器,那么就可以自动记录日志

  • 示例

    • from loguru import logger
      from functools import wraps
      import timedef timed_function(func):@wraps(func)def wrapper(*args, **kwargs):start_time = time.time()result = func(*args, **kwargs)end_time = time.time()duration = end_time - start_timelogger.info(f"Function {func.__name__} took {duration:.2f}s to execute.")return resultreturn wrapper@timed_function
      def add_func(x, y):import timetime.sleep(1)return x + yadd_func(1, 2)
      

【三】封装一个loguru

  • 目录结构:一般都是放在一个utils文件夹下
pythonProject # 项目文件-- utils  # 工具文件夹-- common_loguru 			# 自定义loguru工具包-- __init__.py 			# 初始化文件-- common_loguru.py 	# 主要逻辑py文件-- settings.py 			# 配置文件--test.py 						# 测试文件
  • _inti_.py文件
from .common_loguru import logger as common_loguru
  • common_loguru.py文件
import os
from pathlib import Path
from loguru import logger
# import settings
from . import settings
import sysclass LoguruConfigurator:def __init__(self):self._file_set = settings.LOGURU_FILEself._console_set = settings.LOGURU_CONSOLEdef configure(self):# 清除所有现有的日志处理器(如果有的话)logger.remove()# 控制台输出if self._console_set.get('is_show', '').lower() == "on":level = self._console_set.get('level', 'INFO')logger.add(sink=sys.stderr,format="[<green>{time:YYYY-MM-DD HH:mm:ss}</green> {level:<8}| ""<cyan>{module}</cyan>.<cyan>{function}</cyan>:<cyan>{line}</cyan> | ""<level>{message}</level>",level=level,)# 文件保存if self._file_set.get('is_show', '').lower() == "on":log_path = self._file_set.get('path', os.path.join(Path(__file__).parent.parent.parent, 'logs','test{time:YYYY-MM-DD}.log'))level = self._file_set.get('level', 'INFO')rotation = self._file_set.get('rotation', '10MB')retention = self._file_set.get('retention', '7 days')logger.add(log_path,rotation=rotation,retention=retention,compression='zip',encoding="utf-8",enqueue=True,format="[{time:YYYY-MM-DD HH:mm:ss} {level:<6} | {file}:{module}.{function}:{line}]  {message}",level=level,)configurator = LoguruConfigurator()
configurator.configure()if __name__ == '__main__':# 测试logger.info('这是一条info级别日志')logger.warning('这是一条warning级别日志')logger.error('这是一条error级别日志')logger.critical('这是一条critical级别日志')logger.debug('这是一条debug级别日志')
  • settings.py文件
import os
from pathlib import PathLOGURU_FILE = {"is_show": "on","level": "INFO",'path': os.path.join(Path(__file__).parent.parent.parent, 'logs', 'test{time:YYYY-MM-DD}.log'),"rotation": "10MB",'retention': "7 days",
}
LOGURU_CONSOLE = {"is_show": "on","level": "INFO",
}
  • test.py文件
from utils.common_loguru import common_logurucommon_loguru.info('再次测试')

这篇关于Python 日志模块Loguru基本使用和封装使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981331

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例