python 中 pickle 模块学习笔记

2024-05-12 01:48

本文主要是介绍python 中 pickle 模块学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 概要
  2. 和json 模块的比较
  3. 常用api说明
  4. 具体应用举例
  5. 总结
  6. 参考文档 pickle模块

    一. 概要

    用这个模块 可以创建Python对象的可移植序列化表示。
    Create portable serialized representations of Python objects.

    二.pickle 和json 模块对比
    1. json 模块实现序列化方式 一般是 unicode text ,而且序列化后, 人是可以看懂的. 但是 pickle 序列化方式是二进制的, 人是看不懂的.
    2. json 序列化更加广泛,并且json 是可以互操作的. pickle 仅是Python 独有的一种方式.
    3. json 可以序列化Python内置类型的子类. 但是我如果要序列化 自己写的类,显得无能为力. 但是pickle 模块是可以的,可以序列化 自己写的类,同时可以序列化Python内置类型的子类型.
There are fundamental differences between the pickle protocols and JSON (JavaScript Object Notation):JSON is a text serialization format (it outputs unicode text, although most of the time it is then encoded to utf-8), while pickle is a binary serialization format;
JSON is human-readable, while pickle is not;
JSON is interoperable and widely used outside of the Python ecosystem, while pickle is Python-specific;
JSON, by default, can only represent a subset of the Python built-in types, and no custom classes; pickle can represent an extremely large number of Python types (many of them automatically, by clever usage of Python’s introspection facilities; complex cases can be tackled by implementing specific object APIs).

1看一个小例子


import pickle
import jsonif __name__ == '__main__':d1 = dict(zip('frank', range(5)))print(d1)json_str = json.dumps(d1)pickle_str = pickle.dumps(d1)print(f'json_str: {json_str}')print(f'pickle_str: {pickle_str}')

结果如下:

{'f': 0, 'r': 1, 'a': 2, 'n': 3, 'k': 4}
json_str: {"f": 0, "r": 1, "a": 2, "n": 3, "k": 4}
pickle_str: b'\x80\x03}q\x00(X\x01\x00\x00\x00fq\x01K\x00X\x01\x00\x00\x00rq\x02K\x01X\x01\x00\x00\x00aq\x03K\x02X\x01\x00\x00\x00nq\x04K\x03X\x01\x00\x00\x00kq\x05K\x04u.'Process finished with exit code 0

可以看出来,json 序列化后,是人类能够看懂的.而pickle 模块序列化后,就看不懂了,因为是二进制的.

在看一个例子

#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
"""
@author: Frank 
@contact: frank.chang@shoufuyou.com
@file: test_pickle.py
@time: 2018/7/22 上午9:06"""import pickle
import jsonclass Person:__tablename__ = 'person'table_flag = 'online'def __init__(self, name):self.name = name@classmethoddef pickup(cls, *args, **kwargs):print('pickup() is running.')kwargs.update({"name": "frank", "hobby": "swim"})return kwargsdef test_pickle():# 序列化类p1 = pickle.dumps(Person)# 反序列化P1 = pickle.loads(p1)# 打印Person类print(P1)p2 = P1('frank')print(p2.pickup())def test_json():p1 = json.dumps(Person)P1 = json.loads(p1)print(P1)p2 = P1('frank')print(p2.pickup())if __name__ == '__main__':# test_pickle()test_json()

报错如下:

TypeError: Object of type 'type' is not JSON serializable

这里就是 type 不可以json 序列化的.

而用 test_pickle() 是可以的.
结果如下:

<class '__main__.Person'>
pickup() is running.
{'name': 'frank', 'hobby': 'swim'}

##### 三. 常用api说明

提供了常用序列化,和反序列化的接口
dumps dump 前一个返回时一个bytes 对象 , 后一个直接序列化到文件里面

loads load 前一个 从二进制bytes对象读取对象, 后一个 从文件中读取对象

pickle.dump(obj, file, protocol=None, *, fix_imports=True)

pickle.dumps(obj, protocol=None, *, fix_imports=True)

pickle.load(file, *, fix_imports=True, encoding=”ASCII”, errors=”strict”)

pickle.loads(bytes_object, *, fix_imports=True, encoding=”ASCII”, errors=”strict”)

如果要有更多的空值, 可以使用下面的两个类 来定制你的 序列化对象
The pickle module exports two classes, Pickler and Unpickler:

如果要对序列化和反序列化进行更多控制,可以分别创建Pickler或Unpickler对象。

pickle 模块定义的异常
The pickle module defines three exceptions:

exception pickle.PickleErrorexception pickle.PicklingErrorexception pickle.UnpicklingError

来看一个例子

import pickleclass Person:__tablename__ = 'person'table_flag = 'online'def __init__(self, name):self.name = name@classmethoddef pickup(cls, *args, **kwargs):print('pickup() is running.')# 所有的参数直接返回,不做任何处理.kwargs.update({"name": "frank", "hobby": "swim"})return kwargs@classmethoddef extract(cls, value='frank'):"""获取写数据库必要数据:param value: pickup 方法的返回值:param context: pickup 方法的入参:return:"""print('extract() is running.')return valueclass Serialization:def __init__(self, obj):self.myclass = objdef serialize(self):with open('pickle.txt', 'wb+') as f:# 写入  序列化到文件pickle.dump(self.myclass, f)def deserialize(self):# 反序列化  从文件反序列化with open('pickle.txt', 'rb') as f:# 读取data = pickle.load(f)return dataif __name__ == '__main__':ser = Serialization(Person)ser.serialize()person = ser.deserialize()print(f'person.table_flag: {person.table_flag}')print(person.pickup())print(person.extract())

结果如下:

person.table_flag: online
pickup() is running.
{'name': 'frank', 'hobby': 'swim'}
extract() is running.
frank

这个例子就是把类序列化到文件里面, 之后再从文件中读出来.

四. 具体应用举例

这个模块具体有什么用呢? 比如 有一个系统需要动态加载类, (我的意思是类是通过代码生成的,然后要把这个类加载到内存里面)
但是有一天我担心,如果程序突然有意外的bug ,或者其他的情况崩溃了, 而之前加载的类,就会消失了,一旦重启了系统,所有动态生成的类就会消失了, 所以pickle 模块就给我提供非常好用的方法. 可以把类序列化写到文件,或者序列化到二进制bytes 对象. 之后如果系统重启后,我重新 反序列把类读取到内存里面,完成反序列化.

#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
"""
@author: Frank 
@contact: frank.chang@shoufuyou.com
@file: serialization.py
@time: 2018/7/22 上午12:18"""import pickleclass Person:__tablename__ = 'person'table_flag = 'online'def __init__(self, name):self.name = name@classmethoddef pickup(cls, *args, **kwargs):print('pickup() is running.')# 所有的参数直接返回,不做任何处理.kwargs.update({"name": "frank", "hobby": "swim"})return kwargs@classmethoddef extract(cls, value='frank'):""":param value: pickup 方法的返回值:return:"""print('extract() is running.')return valueclass Serialization:def __init__(self):self.myclasses = []def resigester(self, obj):self.myclasses.append(obj)def serialize(self):# 写入 序列化pickle_strings = []for myclass in self.myclasses:pickle_string = pickle.dumps(myclass)pickle_strings.append(pickle_string)return pickle_strings@staticmethoddef deserialize(bytes_object):# 反序列化  从文件反序列化return pickle.loads(bytes_object)if __name__ == '__main__':serialization = Serialization()serialization.resigester(Person)# 序列化Person 类strings = serialization.serialize()# 打印 序列化的结果print(strings)for bytes_obj in strings:# 反序列,得到Person 类P = serialization.deserialize(bytes_obj)print(P)# 构造p1 对象p1 = P('frank')print(p1.pickup())

结果如下:

[b'\x80\x03c__main__\nPerson\nq\x00.']
<class '__main__.Person'>
pickup() is running.
{'name': 'frank', 'hobby': 'swim'}

通过Serialization 序列化 Person类,之后有把他反序列出来, 完成序列化, 与反序列化操作.

五.参考文档

本文简单介绍了pickle模块的常见用法,常用api , 比较了与pickle 模块的不同. 如果需要特殊定制序列化, 可以使用 接口提供的那两个类.Pickler and Unpickler 这两个类更多的参考官方文档, 一般用的比较少.

六.参考文档

https://docs.python.org/3/library/pickle.html


分享快乐,留住感动.2018-07-22 18:59:19 –frank

这篇关于python 中 pickle 模块学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981267

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数