python 中 pickle 模块学习笔记

2024-05-12 01:48

本文主要是介绍python 中 pickle 模块学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 概要
  2. 和json 模块的比较
  3. 常用api说明
  4. 具体应用举例
  5. 总结
  6. 参考文档 pickle模块

    一. 概要

    用这个模块 可以创建Python对象的可移植序列化表示。
    Create portable serialized representations of Python objects.

    二.pickle 和json 模块对比
    1. json 模块实现序列化方式 一般是 unicode text ,而且序列化后, 人是可以看懂的. 但是 pickle 序列化方式是二进制的, 人是看不懂的.
    2. json 序列化更加广泛,并且json 是可以互操作的. pickle 仅是Python 独有的一种方式.
    3. json 可以序列化Python内置类型的子类. 但是我如果要序列化 自己写的类,显得无能为力. 但是pickle 模块是可以的,可以序列化 自己写的类,同时可以序列化Python内置类型的子类型.
There are fundamental differences between the pickle protocols and JSON (JavaScript Object Notation):JSON is a text serialization format (it outputs unicode text, although most of the time it is then encoded to utf-8), while pickle is a binary serialization format;
JSON is human-readable, while pickle is not;
JSON is interoperable and widely used outside of the Python ecosystem, while pickle is Python-specific;
JSON, by default, can only represent a subset of the Python built-in types, and no custom classes; pickle can represent an extremely large number of Python types (many of them automatically, by clever usage of Python’s introspection facilities; complex cases can be tackled by implementing specific object APIs).

1看一个小例子


import pickle
import jsonif __name__ == '__main__':d1 = dict(zip('frank', range(5)))print(d1)json_str = json.dumps(d1)pickle_str = pickle.dumps(d1)print(f'json_str: {json_str}')print(f'pickle_str: {pickle_str}')

结果如下:

{'f': 0, 'r': 1, 'a': 2, 'n': 3, 'k': 4}
json_str: {"f": 0, "r": 1, "a": 2, "n": 3, "k": 4}
pickle_str: b'\x80\x03}q\x00(X\x01\x00\x00\x00fq\x01K\x00X\x01\x00\x00\x00rq\x02K\x01X\x01\x00\x00\x00aq\x03K\x02X\x01\x00\x00\x00nq\x04K\x03X\x01\x00\x00\x00kq\x05K\x04u.'Process finished with exit code 0

可以看出来,json 序列化后,是人类能够看懂的.而pickle 模块序列化后,就看不懂了,因为是二进制的.

在看一个例子

#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
"""
@author: Frank 
@contact: frank.chang@shoufuyou.com
@file: test_pickle.py
@time: 2018/7/22 上午9:06"""import pickle
import jsonclass Person:__tablename__ = 'person'table_flag = 'online'def __init__(self, name):self.name = name@classmethoddef pickup(cls, *args, **kwargs):print('pickup() is running.')kwargs.update({"name": "frank", "hobby": "swim"})return kwargsdef test_pickle():# 序列化类p1 = pickle.dumps(Person)# 反序列化P1 = pickle.loads(p1)# 打印Person类print(P1)p2 = P1('frank')print(p2.pickup())def test_json():p1 = json.dumps(Person)P1 = json.loads(p1)print(P1)p2 = P1('frank')print(p2.pickup())if __name__ == '__main__':# test_pickle()test_json()

报错如下:

TypeError: Object of type 'type' is not JSON serializable

这里就是 type 不可以json 序列化的.

而用 test_pickle() 是可以的.
结果如下:

<class '__main__.Person'>
pickup() is running.
{'name': 'frank', 'hobby': 'swim'}

##### 三. 常用api说明

提供了常用序列化,和反序列化的接口
dumps dump 前一个返回时一个bytes 对象 , 后一个直接序列化到文件里面

loads load 前一个 从二进制bytes对象读取对象, 后一个 从文件中读取对象

pickle.dump(obj, file, protocol=None, *, fix_imports=True)

pickle.dumps(obj, protocol=None, *, fix_imports=True)

pickle.load(file, *, fix_imports=True, encoding=”ASCII”, errors=”strict”)

pickle.loads(bytes_object, *, fix_imports=True, encoding=”ASCII”, errors=”strict”)

如果要有更多的空值, 可以使用下面的两个类 来定制你的 序列化对象
The pickle module exports two classes, Pickler and Unpickler:

如果要对序列化和反序列化进行更多控制,可以分别创建Pickler或Unpickler对象。

pickle 模块定义的异常
The pickle module defines three exceptions:

exception pickle.PickleErrorexception pickle.PicklingErrorexception pickle.UnpicklingError

来看一个例子

import pickleclass Person:__tablename__ = 'person'table_flag = 'online'def __init__(self, name):self.name = name@classmethoddef pickup(cls, *args, **kwargs):print('pickup() is running.')# 所有的参数直接返回,不做任何处理.kwargs.update({"name": "frank", "hobby": "swim"})return kwargs@classmethoddef extract(cls, value='frank'):"""获取写数据库必要数据:param value: pickup 方法的返回值:param context: pickup 方法的入参:return:"""print('extract() is running.')return valueclass Serialization:def __init__(self, obj):self.myclass = objdef serialize(self):with open('pickle.txt', 'wb+') as f:# 写入  序列化到文件pickle.dump(self.myclass, f)def deserialize(self):# 反序列化  从文件反序列化with open('pickle.txt', 'rb') as f:# 读取data = pickle.load(f)return dataif __name__ == '__main__':ser = Serialization(Person)ser.serialize()person = ser.deserialize()print(f'person.table_flag: {person.table_flag}')print(person.pickup())print(person.extract())

结果如下:

person.table_flag: online
pickup() is running.
{'name': 'frank', 'hobby': 'swim'}
extract() is running.
frank

这个例子就是把类序列化到文件里面, 之后再从文件中读出来.

四. 具体应用举例

这个模块具体有什么用呢? 比如 有一个系统需要动态加载类, (我的意思是类是通过代码生成的,然后要把这个类加载到内存里面)
但是有一天我担心,如果程序突然有意外的bug ,或者其他的情况崩溃了, 而之前加载的类,就会消失了,一旦重启了系统,所有动态生成的类就会消失了, 所以pickle 模块就给我提供非常好用的方法. 可以把类序列化写到文件,或者序列化到二进制bytes 对象. 之后如果系统重启后,我重新 反序列把类读取到内存里面,完成反序列化.

#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
"""
@author: Frank 
@contact: frank.chang@shoufuyou.com
@file: serialization.py
@time: 2018/7/22 上午12:18"""import pickleclass Person:__tablename__ = 'person'table_flag = 'online'def __init__(self, name):self.name = name@classmethoddef pickup(cls, *args, **kwargs):print('pickup() is running.')# 所有的参数直接返回,不做任何处理.kwargs.update({"name": "frank", "hobby": "swim"})return kwargs@classmethoddef extract(cls, value='frank'):""":param value: pickup 方法的返回值:return:"""print('extract() is running.')return valueclass Serialization:def __init__(self):self.myclasses = []def resigester(self, obj):self.myclasses.append(obj)def serialize(self):# 写入 序列化pickle_strings = []for myclass in self.myclasses:pickle_string = pickle.dumps(myclass)pickle_strings.append(pickle_string)return pickle_strings@staticmethoddef deserialize(bytes_object):# 反序列化  从文件反序列化return pickle.loads(bytes_object)if __name__ == '__main__':serialization = Serialization()serialization.resigester(Person)# 序列化Person 类strings = serialization.serialize()# 打印 序列化的结果print(strings)for bytes_obj in strings:# 反序列,得到Person 类P = serialization.deserialize(bytes_obj)print(P)# 构造p1 对象p1 = P('frank')print(p1.pickup())

结果如下:

[b'\x80\x03c__main__\nPerson\nq\x00.']
<class '__main__.Person'>
pickup() is running.
{'name': 'frank', 'hobby': 'swim'}

通过Serialization 序列化 Person类,之后有把他反序列出来, 完成序列化, 与反序列化操作.

五.参考文档

本文简单介绍了pickle模块的常见用法,常用api , 比较了与pickle 模块的不同. 如果需要特殊定制序列化, 可以使用 接口提供的那两个类.Pickler and Unpickler 这两个类更多的参考官方文档, 一般用的比较少.

六.参考文档

https://docs.python.org/3/library/pickle.html


分享快乐,留住感动.2018-07-22 18:59:19 –frank

这篇关于python 中 pickle 模块学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/981267

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例