python的deap库使用记录

2024-05-12 01:36
文章标签 python 使用 记录 deap

本文主要是介绍python的deap库使用记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 主要是在遗传符号回归的代码中添加了注释和根据一部分源码做了一点改动
import operator
import random
import numpy as np
import matplotlib.pyplot as plt
from deap import algorithms, base, creator, tools, gp
from operator import attrgetter##生成数据
def generate_data():X = np.random.uniform(-10, 10, 100).reshape(-1, 1)y = X**3 - 2*X**2 + 3*X - 5 + np.random.normal(0, 5, 100).reshape(-1, 1)return X, y##population:群体
##toolbox:工具箱
##cxpb:交配概率
##mutpb:变异概率
def varAnd(population, toolbox, cxpb, mutpb):offspring = [toolbox.clone(ind) for ind in population]# Apply crossover and mutation on the offspringfor i in range(1, len(offspring), 2):if random.random() < cxpb:offspring[i - 1], offspring[i] = toolbox.mate(offspring[i - 1],offspring[i])del offspring[i - 1].fitness.values, offspring[i].fitness.valuesfor i in range(len(offspring)):if random.random() < mutpb:offspring[i], = toolbox.mutate(offspring[i])del offspring[i].fitness.valuesreturn offspringdef if_then_else(input, output1, output2):return np.where(input, output1, output2)# 定义评价函数
def evalSymbReg(individual, points):func = toolbox.compile(expr=individual)           #编译表达式sqerrors = ((func(points) - y)**2).flatten()      #误差计算return np.sqrt(np.sum(sqerrors)),# 挑选好的若干个体
def selTournament(individuals, k, tournsize, fit_attr="fitness"):chosen = []for i in range(k):aspirants = [random.choice(individuals) for i in range(tournsize)]chosen.append(max(aspirants, key=attrgetter(fit_attr)))return chosendef eaSimple2(population, toolbox, cxpb, mutpb, ngen, stats=None,halloffame=None, verbose=__debug__):#用适应度评价群体,对还没有进行过评价的个体进行评价(主要是存在很多评价过的个体)invalid_ind = []   for ind in population:if not ind.fitness.valid:invalid_ind.append(ind)fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitnesses):ind.fitness.values = fitif halloffame is not None:    #名人堂halloffame.update(population)#开始迭代过程for gen in range(1, ngen + 1):#1、选择下一代繁殖个体offspring = toolbox.select(population, len(population))#2、交叉变异offspring = toolbox.varAnd(offspring, toolbox, cxpb, mutpb)#3、对适应度无效的个体进行评价invalid_ind = []for ind in offspring:if not ind.fitness.valid:invalid_ind.append(ind)fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitnesses):ind.fitness.values = fit#4、更新名人堂if halloffame is not None:halloffame.update(offspring)#5、用后代代替当前的群体population = offspring   #用这种方法可以使用原来的地址return population#################################################################################################
# 1、创建遗传符号回归语义集合
pset = gp.PrimitiveSet("MAIN", 1)
pset.addPrimitive(operator.add, 2)
pset.addPrimitive(operator.sub, 2)
pset.addPrimitive(operator.mul, 2)
pset.addPrimitive(operator.neg, 1)
pset.addPrimitive(np.square, 1)
pset.addPrimitive(np.sqrt, 1)
pset.addPrimitive(if_then_else, 3)
pset.addEphemeralConstant("rand101", lambda: random.uniform(-10, 10))# 2、顶级适应度和个体类
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)
# 4、定义工具函数,这里可以引入自定义函数
toolbox = base.Toolbox()
## 4.1 定义个体和种群
toolbox.register("expr", gp.genFull, pset=pset, min_=1, max_=2)                      #在两个子叶之间生成1-2深度表达式
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)  #定义个体
toolbox.register("population", tools.initRepeat, list, toolbox.individual)            #生成群体
## 4.2 公式编码
toolbox.register("compile", gp.compile, pset=pset)                                    #表达式编译
## 4.3 评价和挑选
X, y = generate_data()
toolbox.register("evaluate", evalSymbReg, points=X)                                #用生成的这些数据进行评价 
toolbox.register("select", selTournament, tournsize=3)                           #个体筛选
## 4.4 交叉变异和下一代繁殖
toolbox.register("mate", gp.cxOnePoint)                                                   #交叉toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)               #变异
toolbox.register("select", selTournament, tournsize=3)   toolbox.register("varAnd", varAnd)   #繁殖########################################################################
# 1、定义种群和名人堂
pop = toolbox.population(n=300)        #种群
hof = tools.HallOfFame(10)              #名人堂
# 2、拟合公式
pop = eaSimple2(pop, toolbox, 0.5, 0.1, 40,halloffame=hof, verbose=True)
best_ind = hof[0]
print("拟合公式:",best_ind)
# 3、画出图像
func = toolbox.compile(expr=best_ind)
y_pred = func(X)
plt.figure()
plt.scatter(X, y, color='blue', label='Actual data')
plt.scatter(X, y_pred, color='red', label='Predicted data')
plt.legend()
plt.show()

这篇关于python的deap库使用记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981235

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有