理解导数(x^n求导后nx^n-1)

2024-05-12 00:04
文章标签 理解 求导 导数 nx

本文主要是介绍理解导数(x^n求导后nx^n-1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下都是为了方便理解

请添加图片描述

请添加图片描述

微小量是 t
M(x)是一个函数
M 在 x 处的斜率 = M 在 x 处的导数 = 垂直距离 平移距离 = M ( x + t ) − M ( x ) ( x + t ) − x M在x处的斜率 = M在x处的导数= \dfrac{垂直距离}{平移距离} =\dfrac{M\left( x+t\right) -M\left( x\right) }{(x + t) -x} Mx处的斜率=Mx处的导数=平移距离垂直距离=(x+t)xM(x+t)M(x)
求导原型 = M ( x ) = M ( x + t ) − M ( x ) t 求导原型=M\left( x\right) =\dfrac{M\left( x+t\right) -M\left( x\right) }{t} 求导原型=M(x)=tM(x+t)M(x)
当前数的导数 = ( 当前数 + 微小量 ) − 当前数 微小量 当前数的导数 = \dfrac{(当前数 + 微小量) - 当前数}{微小量} 当前数的导数=微小量(当前数+微小量)当前数

将直线方程带入,进行求导: M(x)= kx+b

[ k ( x + t ) + b ] − [ k x + b ] t = k ( t ) t = k \dfrac{\left[ k\left( x+t\right) +b\right] -\left[ kx+b\right] }{t} = \dfrac{k\left( t\right) }{t}=k t[k(x+t)+b][kx+b]=tk(t)=k

x^2

若x的变化规律是平方
M 在 x 点的导数 = M ( x + t ) − M ( x ) t = ( x + t ) 2 − x 2 t M在x点的导数 = \dfrac{M\left( x+t\right) -M\left( x\right) }{t} = \dfrac{\left( x+t\right) ^{2}-x^{2}}{t} Mx点的导数=tM(x+t)M(x)=t(x+t)2x2
根据平方和公式:
M 在 x 点的导数 = x 2 + 2 x ( t ) + ( t ) 2 − x 2 t = 2 x ( t ) + ( t ) 2 t M在x点的导数 = \dfrac{x^{2}+2x\left( t\right) +\left( t\right) ^{2}-x^{2}}{t} = \dfrac{2x\left( t\right) +\left( t\right) ^{2}}{t} Mx点的导数=tx2+2x(t)+(t)2x2=t2x(t)+(t)2

M 在 x 的陡峭度 = 2 x + t M在x的陡峭度 = 2x+t Mx的陡峭度=2x+t
由于t可以忽略不记,所以最终结果是2x

x^3

M 在 x 点的导数 = M ( x + t ) − M ( x ) t = ( x + t ) 3 − x 3 t M在x点的导数 = \dfrac{M\left( x+t\right) -M\left( x\right) }{t} = \dfrac{\left( x+t\right) ^{3}-x^{3}}{t} Mx点的导数=tM(x+t)M(x)=t(x+t)3x3
根据立方和公式:
( x + t ) 3 = x 3 + t 3 + 3 x 2 t + 3 x t 2 (x + t )^{3} = x^{3} + t^{3} + 3x^{2}t + 3xt^{2} (x+t)3=x3+t3+3x2t+3xt2
M 在 x 点的导数 = x 3 + t 3 + 3 x 2 t + 3 x t 2 − x 3 t = t 3 + 3 x 2 t + 3 x t 2 t M在x点的导数 = \dfrac{x^{3} + t^{3} + 3x^{2}t + 3xt^{2} - x^{3}}{t} = \dfrac{t^{3} + 3x^{2}t + 3xt^{2}}{t} Mx点的导数=tx3+t3+3x2t+3xt2x3=tt3+3x2t+3xt2
M 在 x 点的导数 = t 3 + 3 x 2 t + 3 x t 2 t = t 2 + 3 x 2 + 3 x t M在x点的导数 = \dfrac{t^{3} + 3x^{2}t + 3xt^{2}}{t} = t^{2} + 3x^{2} + 3xt Mx点的导数=tt3+3x2t+3xt2=t2+3x2+3xt
由于t可以忽略不记,所有最终结果:3x^2
M 在 x 点的导数 = t 2 + 3 x 2 + 3 x t = 3 x 2 M在x点的导数 = t^{2} + 3x^{2} + 3xt = 3x^{2} Mx点的导数=t2+3x2+3xt=3x2

x^n

到这里我们可以发现,展开(x+t)^n是最费力的。
找规律:
在展开(x+t)^n的时候,到后面 t 相互抵消后,总会留下来一个
n x n − 1 nx^{n-1} nxn1

到现在为止我们知道了,对常数求导后结果是 0 ,对 x 的 n 次方求导结果是 n x n − 1 到现在为止我们知道了,对常数求导后结果是0,对x的n次方求导结果是nx^{n-1} 到现在为止我们知道了,对常数求导后结果是0,对xn次方求导结果是nxn1
就是下面两个红框的内容
在这里插入图片描述

导数求极值

示例:
f ( x ) = x 2 − 6 x + 9 f\left( x\right) =x^{2}-6x+9 f(x)=x26x+9
将上面例子求导
f ( x ) = 2 x − 6 f\left( x\right) = 2x-6 f(x)=2x6
极值点通常在导数为0的点
0 = 2 x − 6 0 = 2x-6 0=2x6
x = 3 x = 3 x=3
极值点是3

这篇关于理解导数(x^n求导后nx^n-1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981039

相关文章

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规