lio-sam建图实现

2024-05-11 17:52
文章标签 实现 sam 建图 lio

本文主要是介绍lio-sam建图实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:https://blog.csdn.net/unlimitedai/article/details/107378759

https://blog.csdn.net/weixin_44126988/article/details/131654142?ops_request_misc=&request_id=&biz_id=102&utm_term=lego-loam%E5%BB%BA%E5%9B%BE%E8%BD%AC%E4%B8%BA%E6%A0%85%E6%A0%BC%E5%9C%B0%E5%9B%BE&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-131654142.nonecase&spm=1018.2226.3001.4187

https://blog.csdn.net/zhuchao414259/article/details/127993112?ops_request_misc=&request_id=&biz_id=102&utm_term=rslidar3d%E5%BB%BA%E5%9B%BE&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-127993112.142v100control&spm=1018.2226.3001.4187
代码:https://github.com/TixiaoShan/LIO-SAM
数据集: https://pan.baidu.com/s/1-sAB_cNlYPqTjDuaFgz9pg 提取码: ejmu (walk不需要改配置文件,其他两个需要下文有)
原文:bashLIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping

作者Tixiao Shan在2018年发表过LeGO-LOAM,当时他还在史蒂文斯理工学院读博士,19年毕业之后去了MIT做助理研究员(羡慕.jpg)。。。这篇文章LIO-SAM实际上是LeGO-LOAM的扩展版本,添加了IMU预积分因子和GPS因子,去除了帧帧匹配部分,然后更详细地描述了LeGO-LOAM帧图匹配部分的设计动机和细节。(引用于知乎大佬文章【论文阅读38】LIO-SAM)现在论文已经被IROS2020录用,作为高精度,imu,雷达,gps结合,程序还少的开源slam,非常值得学习。

需要安装的依赖:

sudo apt-get install -y ros-kinetic-navigation
sudo apt-get install -y ros-kinetic-robot-localization
sudo apt-get install -y ros-kinetic-robot-state-publisher

安装gtsam4.0.2库:

wget -O ~/Downloads/gtsam.zip https://github.com/borglab/gtsam/archive/4.0.2.zip
cd ~/Downloads/ && unzip gtsam.zip -d ~/Downloads/
cd ~/Downloads/gtsam-4.0.2/
mkdir build && cd build
cmake -DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF ..
sudo make install -j8

修改后的launch文件run_gugao.launch:

<launch><arg name="project" default="lio_sam"/><!-- Parameters --><rosparam file="$(find lio_sam)/config/params_mingnuo.yaml" command="load" /><!--- LOAM --><include file="$(find lio_sam)/launch/include/module_loam.launch" /><!--- Robot State TF --><include file="$(find lio_sam)/launch/include/module_robot_state_publisher.launch" /><!--- Run Navsat --><include file="$(find lio_sam)/launch/include/module_navsat.launch" /><!--- Run Rviz--><include file="$(find lio_sam)/launch/include/module_rviz.launch" /></launch>

运行walk数据包不需要改params.yaml文件。其他两个数据包运行要修改topics和extrinsicRPY,extrinsicRot。需要保存pcd请修改保存true和路径。之后sudo gedit /opt/ros/kinetic/lib/python2.7/dist-packages/roslaunch/nodeprocess.py
调大_TIMEOUT_SIGINT值:
具体params.yaml配置修改:
修改点:
imu话题
激光话题
imu和激光外参extrinsicRot和extrinsicRPY
保存地图的开关:
savePCD: true # https://github.com/TixiaoShan/LIO-SAM/issues/3
savePCDDirectory: “/houduan/LIO-SAM_down/LIO-SAM_ws/out1/” # 记住不要加/home/name

lio_sam:# TopicspointCloudTopic: "points_raw"               # Point cloud dataimuTopic: "imu_correct"                         # IMU dataodomTopic: "odometry/imu"                   # IMU pre-preintegration odometry, same frequency as IMUgpsTopic: "odometry/gpsz"                   # GPS odometry topic from navsat, see module_navsat.launch file# GPS SettingsuseImuHeadingInitialization: false           # if using GPS data, set to "true"useGpsElevation: false                      # if GPS elevation is bad, set to "false"gpsCovThreshold: 2.0                        # m^2, threshold for using GPS dataposeCovThreshold: 25.0                      # m^2, threshold for using GPS data# Export settingssavePCD: true                              # https://github.com/TixiaoShan/LIO-SAM/issues/3savePCDDirectory: "/data/lio/"        # in your home folder, starts and ends with "/". Warning: the code deletes "LOAM" folder then recreates it. See "mapOptimization" for implementation# Sensor SettingsN_SCAN: 16                                  # number of lidar channel (i.e., 16, 32, 64, 128)Horizon_SCAN: 1800                          # lidar horizontal resolution (Velodyne:1800, Ouster:512,1024,2048)timeField: "time"                           # point timestamp field, Velodyne - "time", Ouster - "t"downsampleRate: 1                           # default: 1. Downsample your data if too many points. i.e., 16 = 64 / 4, 16 = 16 / 1 # IMU SettingsimuAccNoise: 3.9939570888238808e-03imuGyrNoise: 1.5636343949698187e-03imuAccBiasN: 6.4356659353532566e-05imuGyrBiasN: 3.5640318696367613e-05imuGravity: 9.80511# Extrinsics (lidar -> IMU)extrinsicTrans: [0.0, 0.0, 0.0]extrinsicRPY: [1,  0, 0,0, 1, 0,0, 0, 1]extrinsicRot: [1, 0, 0,0, 1, 0,0, 0, 1]# extrinsicRPY: [1, 0, 0,#                 0, 1, 0,#                 0, 0, 1]# LOAM feature thresholdedgeThreshold: 1.0surfThreshold: 0.1edgeFeatureMinValidNum: 10surfFeatureMinValidNum: 100# voxel filter papramsodometrySurfLeafSize: 0.4                     # default: 0.4mappingCornerLeafSize: 0.2                    # default: 0.2mappingSurfLeafSize: 0.4                      # default: 0.4# robot motion constraint (in case you are using a 2D robot)z_tollerance: 1000                            # metersrotation_tollerance: 1000                     # radians# CPU ParamsnumberOfCores: 4                              # number of cores for mapping optimizationmappingProcessInterval: 0.15                  # seconds, regulate mapping frequency# Surrounding mapsurroundingkeyframeAddingDistThreshold: 1.0   # meters, regulate keyframe adding thresholdsurroundingkeyframeAddingAngleThreshold: 0.2  # radians, regulate keyframe adding thresholdsurroundingKeyframeDensity: 2.0               # meters, downsample surrounding keyframe poses   surroundingKeyframeSearchRadius: 50.0         # meters, within n meters scan-to-map optimization (when loop closure disabled)# Loop closureloopClosureEnableFlag: falsesurroundingKeyframeSize: 25                   # submap size (when loop closure enabled)historyKeyframeSearchRadius: 15.0             # meters, key frame that is within n meters from current pose will be considerd for loop closurehistoryKeyframeSearchTimeDiff: 30.0           # seconds, key frame that is n seconds older will be considered for loop closurehistoryKeyframeSearchNum: 25                  # number of hostory key frames will be fused into a submap for loop closurehistoryKeyframeFitnessScore: 0.3              # icp threshold, the smaller the better alignment# VisualizationglobalMapVisualizationSearchRadius: 1000.0    # meters, global map visualization radiusglobalMapVisualizationPoseDensity: 10.0       # meters, global map visualization keyframe densityglobalMapVisualizationLeafSize: 1.0           # meters, global map visualization cloud density# Navsat (convert GPS coordinates to Cartesian)
navsat:frequency: 50wait_for_datum: falsedelay: 0.0magnetic_declination_radians: 0yaw_offset: 0zero_altitude: truebroadcast_utm_transform: falsebroadcast_utm_transform_as_parent_frame: falsepublish_filtered_gps: false# EKF for Navsat
ekf_gps:publish_tf: falsemap_frame: mapodom_frame: odombase_link_frame: base_linkworld_frame: odomfrequency: 50two_d_mode: falsesensor_timeout: 0.01# -------------------------------------# External IMU:# -------------------------------------imu0: imu_correct# make sure the input is aligned with ROS REP105. "imu_correct" is manually transformed by myself. EKF can also transform the data using tf between your imu and base_linkimu0_config: [false, false, false,true,  true,  true,false, false, false,false, false, true,true,  true,  true]imu0_differential: falseimu0_queue_size: 50 imu0_remove_gravitational_acceleration: true# -------------------------------------# Odometry (From Navsat):# -------------------------------------odom0: odometry/gpsodom0_config: [true,  true,  true,false, false, false,false, false, false,false, false, false,false, false, false]odom0_differential: falseodom0_queue_size: 10#                            x     y     z     r     p     y   x_dot  y_dot  z_dot  r_dot p_dot y_dot x_ddot y_ddot z_ddotprocess_noise_covariance: [  1.0,  0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    1.0,  0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    10.0, 0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0.03, 0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0.03, 0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0.1,  0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0.25,  0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0.25,  0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0.04,  0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0.01, 0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0.01, 0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0.5,  0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0.01, 0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0.01,   0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0.015]

论文分析
论文认为loam系列文章存在一些问题。

1.将其数据保存在全局体素地图中
2.难以执行闭环检测
3.没有结合其他绝对测量(GPS,指南针等)
4.当该体素地图变得密集时,在线优化过程的效率降低

原理部分看https://blog.csdn.net/unlimitedai/article/details/107378759,写的非常详细。
lio-sam系统运行后严格依赖imu积分结果/odometry/imu_incremental。

定位部分可以参考另外一个项目的:
https://github.com/Gaochao-hit/LIO-SAM_based_relocalization

这篇关于lio-sam建图实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980243

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S