lio-sam建图实现

2024-05-11 17:52
文章标签 实现 sam 建图 lio

本文主要是介绍lio-sam建图实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:https://blog.csdn.net/unlimitedai/article/details/107378759

https://blog.csdn.net/weixin_44126988/article/details/131654142?ops_request_misc=&request_id=&biz_id=102&utm_term=lego-loam%E5%BB%BA%E5%9B%BE%E8%BD%AC%E4%B8%BA%E6%A0%85%E6%A0%BC%E5%9C%B0%E5%9B%BE&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-131654142.nonecase&spm=1018.2226.3001.4187

https://blog.csdn.net/zhuchao414259/article/details/127993112?ops_request_misc=&request_id=&biz_id=102&utm_term=rslidar3d%E5%BB%BA%E5%9B%BE&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-127993112.142v100control&spm=1018.2226.3001.4187
代码:https://github.com/TixiaoShan/LIO-SAM
数据集: https://pan.baidu.com/s/1-sAB_cNlYPqTjDuaFgz9pg 提取码: ejmu (walk不需要改配置文件,其他两个需要下文有)
原文:bashLIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping

作者Tixiao Shan在2018年发表过LeGO-LOAM,当时他还在史蒂文斯理工学院读博士,19年毕业之后去了MIT做助理研究员(羡慕.jpg)。。。这篇文章LIO-SAM实际上是LeGO-LOAM的扩展版本,添加了IMU预积分因子和GPS因子,去除了帧帧匹配部分,然后更详细地描述了LeGO-LOAM帧图匹配部分的设计动机和细节。(引用于知乎大佬文章【论文阅读38】LIO-SAM)现在论文已经被IROS2020录用,作为高精度,imu,雷达,gps结合,程序还少的开源slam,非常值得学习。

需要安装的依赖:

sudo apt-get install -y ros-kinetic-navigation
sudo apt-get install -y ros-kinetic-robot-localization
sudo apt-get install -y ros-kinetic-robot-state-publisher

安装gtsam4.0.2库:

wget -O ~/Downloads/gtsam.zip https://github.com/borglab/gtsam/archive/4.0.2.zip
cd ~/Downloads/ && unzip gtsam.zip -d ~/Downloads/
cd ~/Downloads/gtsam-4.0.2/
mkdir build && cd build
cmake -DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF ..
sudo make install -j8

修改后的launch文件run_gugao.launch:

<launch><arg name="project" default="lio_sam"/><!-- Parameters --><rosparam file="$(find lio_sam)/config/params_mingnuo.yaml" command="load" /><!--- LOAM --><include file="$(find lio_sam)/launch/include/module_loam.launch" /><!--- Robot State TF --><include file="$(find lio_sam)/launch/include/module_robot_state_publisher.launch" /><!--- Run Navsat --><include file="$(find lio_sam)/launch/include/module_navsat.launch" /><!--- Run Rviz--><include file="$(find lio_sam)/launch/include/module_rviz.launch" /></launch>

运行walk数据包不需要改params.yaml文件。其他两个数据包运行要修改topics和extrinsicRPY,extrinsicRot。需要保存pcd请修改保存true和路径。之后sudo gedit /opt/ros/kinetic/lib/python2.7/dist-packages/roslaunch/nodeprocess.py
调大_TIMEOUT_SIGINT值:
具体params.yaml配置修改:
修改点:
imu话题
激光话题
imu和激光外参extrinsicRot和extrinsicRPY
保存地图的开关:
savePCD: true # https://github.com/TixiaoShan/LIO-SAM/issues/3
savePCDDirectory: “/houduan/LIO-SAM_down/LIO-SAM_ws/out1/” # 记住不要加/home/name

lio_sam:# TopicspointCloudTopic: "points_raw"               # Point cloud dataimuTopic: "imu_correct"                         # IMU dataodomTopic: "odometry/imu"                   # IMU pre-preintegration odometry, same frequency as IMUgpsTopic: "odometry/gpsz"                   # GPS odometry topic from navsat, see module_navsat.launch file# GPS SettingsuseImuHeadingInitialization: false           # if using GPS data, set to "true"useGpsElevation: false                      # if GPS elevation is bad, set to "false"gpsCovThreshold: 2.0                        # m^2, threshold for using GPS dataposeCovThreshold: 25.0                      # m^2, threshold for using GPS data# Export settingssavePCD: true                              # https://github.com/TixiaoShan/LIO-SAM/issues/3savePCDDirectory: "/data/lio/"        # in your home folder, starts and ends with "/". Warning: the code deletes "LOAM" folder then recreates it. See "mapOptimization" for implementation# Sensor SettingsN_SCAN: 16                                  # number of lidar channel (i.e., 16, 32, 64, 128)Horizon_SCAN: 1800                          # lidar horizontal resolution (Velodyne:1800, Ouster:512,1024,2048)timeField: "time"                           # point timestamp field, Velodyne - "time", Ouster - "t"downsampleRate: 1                           # default: 1. Downsample your data if too many points. i.e., 16 = 64 / 4, 16 = 16 / 1 # IMU SettingsimuAccNoise: 3.9939570888238808e-03imuGyrNoise: 1.5636343949698187e-03imuAccBiasN: 6.4356659353532566e-05imuGyrBiasN: 3.5640318696367613e-05imuGravity: 9.80511# Extrinsics (lidar -> IMU)extrinsicTrans: [0.0, 0.0, 0.0]extrinsicRPY: [1,  0, 0,0, 1, 0,0, 0, 1]extrinsicRot: [1, 0, 0,0, 1, 0,0, 0, 1]# extrinsicRPY: [1, 0, 0,#                 0, 1, 0,#                 0, 0, 1]# LOAM feature thresholdedgeThreshold: 1.0surfThreshold: 0.1edgeFeatureMinValidNum: 10surfFeatureMinValidNum: 100# voxel filter papramsodometrySurfLeafSize: 0.4                     # default: 0.4mappingCornerLeafSize: 0.2                    # default: 0.2mappingSurfLeafSize: 0.4                      # default: 0.4# robot motion constraint (in case you are using a 2D robot)z_tollerance: 1000                            # metersrotation_tollerance: 1000                     # radians# CPU ParamsnumberOfCores: 4                              # number of cores for mapping optimizationmappingProcessInterval: 0.15                  # seconds, regulate mapping frequency# Surrounding mapsurroundingkeyframeAddingDistThreshold: 1.0   # meters, regulate keyframe adding thresholdsurroundingkeyframeAddingAngleThreshold: 0.2  # radians, regulate keyframe adding thresholdsurroundingKeyframeDensity: 2.0               # meters, downsample surrounding keyframe poses   surroundingKeyframeSearchRadius: 50.0         # meters, within n meters scan-to-map optimization (when loop closure disabled)# Loop closureloopClosureEnableFlag: falsesurroundingKeyframeSize: 25                   # submap size (when loop closure enabled)historyKeyframeSearchRadius: 15.0             # meters, key frame that is within n meters from current pose will be considerd for loop closurehistoryKeyframeSearchTimeDiff: 30.0           # seconds, key frame that is n seconds older will be considered for loop closurehistoryKeyframeSearchNum: 25                  # number of hostory key frames will be fused into a submap for loop closurehistoryKeyframeFitnessScore: 0.3              # icp threshold, the smaller the better alignment# VisualizationglobalMapVisualizationSearchRadius: 1000.0    # meters, global map visualization radiusglobalMapVisualizationPoseDensity: 10.0       # meters, global map visualization keyframe densityglobalMapVisualizationLeafSize: 1.0           # meters, global map visualization cloud density# Navsat (convert GPS coordinates to Cartesian)
navsat:frequency: 50wait_for_datum: falsedelay: 0.0magnetic_declination_radians: 0yaw_offset: 0zero_altitude: truebroadcast_utm_transform: falsebroadcast_utm_transform_as_parent_frame: falsepublish_filtered_gps: false# EKF for Navsat
ekf_gps:publish_tf: falsemap_frame: mapodom_frame: odombase_link_frame: base_linkworld_frame: odomfrequency: 50two_d_mode: falsesensor_timeout: 0.01# -------------------------------------# External IMU:# -------------------------------------imu0: imu_correct# make sure the input is aligned with ROS REP105. "imu_correct" is manually transformed by myself. EKF can also transform the data using tf between your imu and base_linkimu0_config: [false, false, false,true,  true,  true,false, false, false,false, false, true,true,  true,  true]imu0_differential: falseimu0_queue_size: 50 imu0_remove_gravitational_acceleration: true# -------------------------------------# Odometry (From Navsat):# -------------------------------------odom0: odometry/gpsodom0_config: [true,  true,  true,false, false, false,false, false, false,false, false, false,false, false, false]odom0_differential: falseodom0_queue_size: 10#                            x     y     z     r     p     y   x_dot  y_dot  z_dot  r_dot p_dot y_dot x_ddot y_ddot z_ddotprocess_noise_covariance: [  1.0,  0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    1.0,  0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    10.0, 0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0.03, 0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0.03, 0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0.1,  0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0.25,  0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0.25,  0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0.04,  0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0.01, 0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0.01, 0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0.5,  0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0.01, 0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0.01,   0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0.015]

论文分析
论文认为loam系列文章存在一些问题。

1.将其数据保存在全局体素地图中
2.难以执行闭环检测
3.没有结合其他绝对测量(GPS,指南针等)
4.当该体素地图变得密集时,在线优化过程的效率降低

原理部分看https://blog.csdn.net/unlimitedai/article/details/107378759,写的非常详细。
lio-sam系统运行后严格依赖imu积分结果/odometry/imu_incremental。

定位部分可以参考另外一个项目的:
https://github.com/Gaochao-hit/LIO-SAM_based_relocalization

这篇关于lio-sam建图实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980243

相关文章

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

SpringBoot使用ffmpeg实现视频压缩

《SpringBoot使用ffmpeg实现视频压缩》FFmpeg是一个开源的跨平台多媒体处理工具集,用于录制,转换,编辑和流式传输音频和视频,本文将使用ffmpeg实现视频压缩功能,有需要的可以参考... 目录核心功能1.格式转换2.编解码3.音视频处理4.流媒体支持5.滤镜(Filter)安装配置linu