[muduo网络库]——muduo库三大核心组件之EventLoop类(剖析muduo网络库核心部分、设计思想)

本文主要是介绍[muduo网络库]——muduo库三大核心组件之EventLoop类(剖析muduo网络库核心部分、设计思想),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接着上一节[muduo网络库]——muduo库三大核心组件之 Poller/EpollPoller类(剖析muduo网络库核心部分、设计思想),我们来剖析muduo库中最后一类核心组件,EventLoop类。
先回顾一下三大核心组件之间的关系。
在这里插入图片描述接着我们进入正题。

EventLoop

Poller封装了和事件监听有关的方法和成员,调用Poller派生类EpollPoller::poll方法,我们就可以获得发生事件的fd 及其 发生的事件。EventLoop是网络服务器中负责 循环 的重要模块,从而做到持续监听、持续获取监听结果、持续处理监听结果对应的事件。
也就是说: EventLoop起到一个驱动循环的功能,Poller负责从事件监听器上获取监听结果,Channel类将fd及其相关属性封装,并将fd及其感兴趣事件和发生的事件以及不同事件对应的回调函数封装在一起,这样在各个模块中传递更加方便。接着被EventLoop调用。
可能上面我画的图不能充分表达三者在muduo库中的角色,下面借用我在地铁站里吃闸机博主的图,可能会让大家看的更加直观。
在这里插入图片描述
在EventLoop就能够充分提现muduo库的重要思想:One Loop Per Thread
在muduo库里边有两种线程:一种里边的事件循环专门处理新用户连接(mainLoop( 也就是baseLoop)),一种里边的事件循环专门处理对应连接的所有读写事件(ioLoop)。

重要成员变量

std::unique_ptr<Poller> poller_;const pid_t threadId_; //记录当前loop所在线程的idTimeStamp pollReturnTime_; //poller返回发生事件的channels的时间点int wakeupFd_;
std::unique_ptr<Channel> wakeupChannel_;ChannelList activeChannels_;std::atomic_bool callingPendingFunctors_; std::vector<Functor> pendingFunctors_;std::mutex mutex_; 
  • poller_就不用在多说什么了,通过它会返回给EventLoop发生的事件。
  • wakeupFd_是非常重要的一个成员,与之对应的wakeupChannel_,起到了一个唤醒loop所在的线程的作用,因为当前线程主要阻塞在poll函数上,唤醒的方法时手动激活这个wakeupChannel_, 写入几个字节让Channel变为可读, 当然这个Channel也注册到Pooll中,在下面的成员函数会详细介绍它的实现。
  • threadId_创建时要保存当前时间循环所在的线程,用于之后运行时判断使用EventLoop的线程是否时EventLoop所属的线程.
  • pollReturnTime_保存poll返回的时间,用于计算从激活到调用回调函数的延迟
  • activeChannels_就是poller返回的所有发生事件的channel列表。
  • callingPendingFunctors_标识当前loop是否有需要执行的回调操作
  • pendingFunctors_存储loop需要执行的所有回调操作,避免本来属于当前线程的回调函数被其他线程调用,应该把这个回调函数添加到属于它所属的线程,等待它属于的线程被唤醒后调用,满足线程安全
  • mutex_互斥锁,用来保护vector容器的线程安全操作

重要成员函数

  • 最最最最重要的莫过于loop()
void EventLoop::loop()
{looping_ = true;quit_ = false;LOG_INFO("EventLoop %p start looping \n",this);while(!quit_){activeChannels_.clear();//监听两类fd 一种是client的fd  一种是wakeuppollReturnTime_ = poller_->poll(kPollTimeMs,&activeChannels_);for(Channel *channel : activeChannels_){//poller监听哪些channel发生事件了,然后上报给EventLoop,通知channel处理相应的事件channel->handleEvent(pollReturnTime_);}//执行当前EventLoop事件循环需要处理的回调操作/*** IO线程 mainloop accept fd <= channel  subloop* mainloop事先注册一个回调cb,需要subloop执行  * wakeup subloop后执行下面的方法 执行之前mainloop注册的cb回调* */doPendingFunctors();}LOG_INFO("EventLoop %p stop looping,\n",this);looping_ = false;
}

从代码中,我们可以看出最核心的部分就是调用了Poller的poll方法,它返回了发生的事件channel列表以及发生的时间now
接着可以看出还有一个doPendingFunctors函数

void EventLoop::doPendingFunctors()
{std::vector<Functor> functors;callingPendingFunctors_ = true; //需要执行回调//括号用于上锁 出了括号就解锁了{std::unique_lock<std::mutex> lock(mutex_);functors.swap(pendingFunctors_);}for(const Functor &functor: functors){functor();//执行当前loop需要执行的回调操作} callingPendingFunctors_ = false;
} 

实际上,这个函数就是用来执行回调的,值得注意的一点就是: 这里使用了一个比较巧妙的思想就是,使用一个局部的vectorpendingFunctors_的交换,这样就避免了因为要读取这个pendingFunctors_的时候,没有释放锁,而新的事件往里写得时候写不进去(mainloop向subloop里面写回调)。

还有一点,一开始的时候很疑惑functor();是在执行什么呢?其实在这里我们可以看出来,经过交换functor();拿到的实际上pendingFunctors_.emplace_back(cb);中的内容,执行回调。那么pendingFunctors_怎么来的?

  • 那就是runInLoop以及queueInLoop
//在当前loop中执行cb
void EventLoop::runInLoop(Functor cb)
{if(isInLoopThread())//在当前的loop线程中,执行cb{cb();}else //在非当前loop执行cb,就需要唤醒loop所在线程执行cb{queueInLoop(cb);}}void EventLoop::queueInLoop(Functor cb)
{{std::unique_lock<std::mutex> lock(mutex_);pendingFunctors_.emplace_back(cb);}if(!isInLoopThread() || callingPendingFunctors_) {wakeup();}
}

可以看出来runInLoop主要是判断是否处于当前IO线程,是则执行这个函数,如果不是则将函数加入队列queueInLoop。在queueInLoop就会把cb放入pendingFunctors_

值得注意: wakeup();这个函数:

在构造函数中已经给它注册了回调函数:

wakeupChannel_->setReadCallback(std::bind(&EventLoop::handleRead,this));
wakeupChannel_->enableReading();

每一个eventloop都将监听wakeupchannel的EPOLLIN读事件了,mianreactor通过给subreactor写东西,通知其苏醒,那么handleRead里面是什么呢?

  • handleRead也是其中比较重要的一个回调了
//发送给subreactor一个读信号,唤醒subreactor
void EventLoop::handleRead()
{uint64_t one = 1;ssize_t n = read(wakeupFd_, &one, sizeof one);if(n != sizeof one){LOG_ERROR("EventLoop::handleRead() reads %d bytes instead of 8",n);}
}
  • 接着看看wakeup()源码
void EventLoop::wakeup()
{uint64_t one = 1;ssize_t n = write(wakeupFd_,&one,sizeof one);if(n != sizeof one){LOG_ERROR("EventLoop::wakeup() writes %lu bytes instead of 8 \n",n);}
}
  • 在析构的时候,关闭它
EventLoop::~EventLoop()
{wakeupChannel_->disableAll();wakeupChannel_->remove();::close(wakeupFd_);t_loopInThisThread = nullptr;
}

这就和上面提到的wakeupFd_联系起来了,
首先wakeupFd_实际上是调用eventfd,把这个wakeupFd_添加到poll中,在需要唤醒时写入8字节数据,
在构造函数中,也注册了它对应的回调函数wakeupChannel_->setReadCallback(std::bind(&EventLoop::handleRead,this));
此时poll返回,执行回调函数,然后执行在pendingFunctors_中的函数。

什么时候需要唤醒呢?

if(!isInLoopThread() || callingPendingFunctors_) 

前者还是比较好理解的,One Loop Per Thread 既然不在这个loop中,那就唤醒它;后者呢?从doPendingFunctors函数中我们可以看到callingPendingFunctors_= true;时,是表明正在执行回调函数,在loop()中可以看出执行完回调,又会阻塞在poller_->poll(kPollTimeMs,&activeChannels_);,如果再次调用queueInLoop,就需要再次唤醒才能继续执行新的回调doPendingFunctors

  • 判断是否在当前线程

首先通过以下代码获取了当前的loop的线程id,

threadId_(CurrentThread::tid())

实际上是在CurrentThread类中,通过调用SYS_gettid来获得,有关于SYS_gettid在我的另一篇博客,已经给了详细的介绍Linux—C/C++编程:syscall(系统调用)、SYS_gettid在muduo库中的使用以及static_cast

然后通过isInLoopThread()

bool isInLoopThread() const { return threadId_ == CurrentThread::tid(); }

进行比较,来判断是否在当前的线程

  • 接下来还有三个回调函数
//EventLoop的方法=> poller的方法
void EventLoop::updateChannel(Channel* channel)
{poller_->updateChannel(channel);
}void EventLoop::removeChannel(Channel* channel)
{poller_->removeChannel(channel);
}bool EventLoop::hasChannel(Channel* channel)
{return poller_->hasChannel(channel);
}

这就是调用了poller_的方法。

  • 最后的最后,就是退出循环了~
void EventLoop::quit()
{quit_ = true;if(!isInLoopThread()){wakeup();}
}

当然了,不在当前线程也是需要唤醒的。

EventLoop中有很多值得学习的点,但是最巧妙的就是wakeupFd_的设计:

传统的进程/线程间唤醒办法是用pipe或者socketpair,IO线程始终监视管道上的可读事件,在需要唤醒的时候,其他线程向管道中写一个字节,这样IO线程就从IO multiplexing阻塞调用中返回。pipe和socketpair都需要一对文件描述符,且pipe只能单向通信,socketpair可以双向通信。一方面它比 pipe 少用一个 fd,节省了资源;另一方面,wakeupFd_的缓冲区管理也简单得多,全部buffer只有定长8 bytes,不像 pipe 那样可能有不定长的真正 buffer。muduo库也没有采用生产者消费者的模型,采用了wakeupFd_这种巧妙的思想,在今后的学习中,我们也可以进一步的使用它。

最后附上代码地址:https://github.com/Cheeron955/mymuduo/tree/master

好了,关于muduo库三大核心组件之EventLoop类就到此结束了,三大核心组件我们都一一梳理介绍了,希望能够帮助到大家,接下来会对其余类进行一个梳理~

这篇关于[muduo网络库]——muduo库三大核心组件之EventLoop类(剖析muduo网络库核心部分、设计思想)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979221

相关文章

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1