【智能算法】正切搜索算法(TSA)原理及实现

2024-05-11 06:12

本文主要是介绍【智能算法】正切搜索算法(TSA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.背景

2022年,A Layeb受到正切函数启发,提出了正切搜索算法(Tangent Search Algorithm, TSA)。

在这里插入图片描述

在这里插入图片描述

2.算法原理

2.1算法思想

TSAT基于正切函数的数学模型将给定的解决方案移动到更好的解决方案,提出了切线飞线函数,其具有平衡开发与勘探搜索的优点。

在TSA中,所有的运动方程都由一个全局阶跃控制,其形式为 s t e p ∗ t a n ( θ ) step*tan(\theta) steptan(θ),类似于levy飞行函数,称为正切飞行

无论是基于导数还是无导数的最优算法都是基于如下的下降方程:
X t + 1 = X t + step ∗ d (1) X^{t+1}=X^t+\text{ step}*d\tag{1} Xt+1=Xt+ stepd(1)
其中step是移动的大小,d是移动的方向。
切线飞行乘以一个递减对数函数的行为。探索搜索在早期迭代中很大,在最后迭代中减少。TSA由三个主要部分组成:强化搜索、探索搜索和逃离局部最小。探索阶段的目的是很好地探索搜索空间并找到最有希望的候选对象。而强化分量则用于将搜索过程导向种群中当前的最佳解。最后,在随机搜索代理(解)的每次迭代中应用逃离局部最小值过程,以避免陷入局部最小值。
在这里插入图片描述

2.2算法过程

强化搜索

在强化搜索中,TSA首先进行随机局部行走,然后将得到的解中的一些变量替换为当前最优解中对应变量的值。对于大于4的问题,替换变量的比例等于20%,对于小于或等于4个变量的问题,替换变量的比例等于50%。
X i t + 1 = X i t + s t e p ∗ tan ⁡ ( θ ) ∗ ( X i t − o p t S i t ) X i t + 1 = o p t S i t if variable i is selected (2) X_i^{t+1}=X_i^t+step*\tan(\theta)*\left(X_i^t-optS_i^t\right)\\X_i^{t+1}=optS_i^t\text{ if variable i is selected}\tag{2} Xit+1=Xit+steptan(θ)(XitoptSit)Xit+1=optSit if variable i is selected(2)

探索搜索

TSA使用变步长与切线飞行的乘积来进行全局随机游动。正切函数有助于有效地探索搜索空间。h接近于/2会使正切值变大,得到的解会远离当前解,而h接近于0会使正切函数的值变小,得到的解会接近当前解。因此,探索搜索方程在全局随机漫步和局部随机漫步之间合并。将探索搜索方程应用于每个变量,其概率为1/D,其中D为问题的维度。
X i t + 1 = X i t + s t e p ∗ tan ⁡ ( θ ) (3) X_i^{t+1}=X_i^t+\mathrm{step}*\tan(\theta)\tag{3} Xit+1=Xit+steptan(θ)(3)
强化搜索和探索搜索是根据给定的概率进行的,称为Pswitch。

在这里插入图片描述

逃离局部最小

为了避免局部最小停滞问题,TSA采用了一种机制通过使用如图所示的特定程序来处理这个问题,这个过程有两个部分以一定的概率执行。
X = X + R . ∗ ( o p t S − r a n d ∗ ( o p t S − X ) ) X = X + tan ⁡ ( tan ⁡ ) ∗ ( u b − l b ) (4) \begin{aligned}&X =X + R.*(\mathrm{opt}S- \mathrm{rand}*(\mathrm{opt}S-X))\\&X = X+ \tan(\tan)*(\mathrm{ub}-\mathrm{lb})\end{aligned}\tag{4} X=X+R.(optSrand(optSX))X=X+tan(tan)(ublb)(4)

在这里插入图片描述
与许多优化算法相比,TSA使用的参数较少,Pswitch, Pesc和step, h是强调开发和探索搜索的主要参数。TSA在早期采用较大的步长,随着搜索过程的进行,步长在迭代过程中呈非线性减小。切线飞行除了对步长有很大的影响外,还使其具有振荡性和周期性。为了适应挖掘和强化搜索过程,TSA采用了基于对数函数的自适应步长非线性递减格式。TSA使用两种步长变量,在强化搜索中使用第一个步长变量:
s t e p 1 = 10 ∗ s i g n ( r a n d − 0.5 ) ∗ n o r m ( o p t S ) ∗ l o g ( 1 + 10 ∗ dim ⁡ / t ) (5) \begin{array}{c}\mathrm{step}1=10*\mathrm{sign}(\mathrm{rand}-0.5)*\mathrm{norm}(\mathrm{opt}S)*\mathrm{log}(1+10*\dim/t)\end{array}\tag{5} step1=10sign(rand0.5)norm(optS)log(1+10dim/t)(5)
在探索搜索中,步长为:
s t e p 2 = 1 ∗ s i g n ( r a n d − 0.5 ) ∗ n o r m ( o p t S − X ) / l o g ( 20 + t ) (6) \begin{aligned}\mathrm{step}2=1*\mathrm{sign}(\mathrm{rand}-0.5)*\mathrm{norm}(\mathrm{opt}S-X)/\mathrm{log}(20+t)\end{aligned}\tag{6} step2=1sign(rand0.5)norm(optSX)/log(20+t)(6)
norm()是欧几里得范数,X是当前解,optS是当前最佳解,用于引导搜索过程走向最佳解。

流程图

在这里插入图片描述

3.结果展示

使用测试框架,测试TSA性能 一键run.m

  • 【智能算法】省时方便,智能算法统计指标——一键运行~

CEC2017-F20
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Layeb A. Tangent search algorithm for solving optimization problems[J]. Neural Computing and Applications, 2022, 34(11): 8853-8884.

5.代码获取

这篇关于【智能算法】正切搜索算法(TSA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978728

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集