fb设备驱动框架分析

2024-05-11 05:20
文章标签 分析 驱动 框架 设备 fb

本文主要是介绍fb设备驱动框架分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、字符设备注册过程:

归根到底,fb设备也是一个字符设备,所以逃不开常规的字符设备驱动框架:
在这里插入图片描述

Linux内核中编写字符设备驱动通常遵循以下步骤:

①、定义主设备号

在Linux中,每个字符设备都有一个唯一的主设备号。你可以静态地分配一个主设备号,或者动态地从内核获取一个未使用的主设备号(一般使用动态获取即可)。

#define MY_DEVICE_MAJOR 240 // 示例:静态分配的主设备号  
// 或者使用动态分配,通过alloc_chrdev_region在运行时获取主设备号

②、构造file_operations结构体

file_operations结构体定义了设备驱动程序提供的操作接口。需要根据不同设备需求实现相应的函数,如open, read, write, release等。

static const struct file_operations fops = {  .owner = THIS_MODULE,  .open = my_device_open,  .read = my_device_read,  .write = my_device_write,  .release = my_device_release,  // 还可以实现其他的函数接口,如ioctl, mmap等  具体查看file_operation结构体定义
};

③、注册驱动

使用register_chrdev函数来注册你的字符设备驱动。注册驱动的时候需要主设备号、设备名称和file_operations结构体作为参数。

static int __init my_device_init(void) {  int result;  // 如果是动态分配主设备号,使用alloc_chrdev_region()  // alloc_chrdev_region(&dev, 0, 1, "my_device");  // major = MAJOR(dev);  result = register_chrdev(MY_DEVICE_MAJOR, "my_device", &fops);  if (result < 0) {  printk(KERN_ALERT "Registering char device failed with %d\n", result);  return result;  }  // 其他初始化代码,如创建设备节点等  return 0;  
}

④、注册入口函数

入口函数是模块的初始化函数,在模块加载时被调用(比如insmod(加载驱动)的时候就会调用了)。

module_init(my_device_init);

⑤、注册出口函数

出口函数是模块的清理函数,在模块卸载时被调用。一般用来注销设备驱动并释放所有相关资源。

static void __exit my_device_exit(void) {  unregister_chrdev(MY_DEVICE_MAJOR, "my_device");  // 如果是动态分配的主设备号,还需要释放它  // unregister_chrdev_region(dev, 1);  // 其他清理代码  
}  
module_exit(my_device_exit);

最后添加模块描述、版本和许可证信息。

MODULE_LICENSE("GPL"); // 或你选择的许可证类型  
MODULE_AUTHOR("Your Name"); // 作者名  
MODULE_DESCRIPTION("A simple character device driver"); // 模块描述  
MODULE_VERSION("1.0"); // 模块版本

上述过程就是编写一个字符设备驱动的整体过程,现在对应到LCD设备是怎么处理的呢?

二、 Framebuffer驱动程序框架

分析fb_mem.c文件(路径drivers\video\fbdev\core\fbmem.c):

在这里插入图片描述

可以看到在fbmem.c文件中使用了上文所讲述的字符设备注册过程。首先通过register_chrdev函数注册主设备号为29的字符设备,注册的字符设备中的ops变量实现了很多fb操作函数。

其中fb_read函数做了大概得调用关系总结,fb_read函数首先会获取fb_info结构体,fb_info结构体里面实现了硬件的参数设置和具体的硬件操作。所以fb_read函数的核心就是调用fb_info结构体里面注册的read函数。

注:其他fb操作函数都类似,都是先获取info结构体,进而调用里面注册的底层硬件操作函数。

调用关系:

例子1:
app:  open("/dev/fb0", ...)   主设备号: 29, 次设备号: 0
--------------------------------------------------------------
kernel:fb_openint fbidx = iminor(inode);struct fb_info *info = = registered_fb[0];例子2:
app:  read()
---------------------------------------------------------------
kernel:fb_readint fbidx = iminor(inode);struct fb_info *info = registered_fb[fbidx];if (info->fbops->fb_read)return info->fbops->fb_read(info, buf, count, ppos);src = (u32 __iomem *) (info->screen_base + p);dst = buffer;*dst++ = fb_readl(src++);copy_to_user(buf, buffer, c)         	

2.3、fb设备驱动框架总结:

分为上下两层:

  • fbmem.c:承上启下
    • 实现、注册file_operations结构体
    • 把APP的调用向下转发到具体的硬件驱动程序
  • xxx_fb.c:硬件相关的驱动程序
    • 实现、注册fb_info结构体
    • 实现硬件操作

三、Framebuffer驱动程序实现过程

3.1、明确主线任务

通过分析上述fbmem.c文件我们可以看到,我们要是想要编写一个fb设备的驱动的话,最终要就是要是先fb_info结构体。有几个重要的成员变量如下:

在这里插入图片描述

  • var这个成员包含了屏幕的可变参数,如分辨率、色深等。在驱动初始化时,应该根据硬件的能力来填充这些参数。

  • fix这个成员包含了屏幕的固定参数,如屏幕的物理尺寸、内存类型等。这些参数也应该在驱动初始化时根据硬件设置。
    在这里插入图片描述

  • fbops这是一个指向fb_ops结构体的指针,它包含了帧缓冲设备所需的操作函数,如fb_fillrectfb_copyareafb_imageblit等。这些函数是硬件相关的,必须根据具体的硬件设备来实现。

  • screen_base这是帧缓冲区的虚拟地址,它指向映射的显存区域。驱动需要设置这个指针以便用户空间可以访问显存。

  • screen_size表示映射的显存大小。这个值应该根据实际的显存大小来设置。

3.2、fb应用程序和驱动交互过程

1. open

app:  open("/dev/fb0", ...)   主设备号: 29, 次设备号: 0
--------------------------------------------------------------
kernel:fb_open   // fbmem.cstruct fb_info *info;info = get_fb_info(fbidx);if (info->fbops->fb_open) {res = info->fbops->fb_open(info,1);   // 硬件相关的驱动if (res)module_put(info->fbops->owner);}         	

2. 获得可变信息(含有分辨率等)

app:  	ioctl(fd, FBIOGET_VSCREENINFO, &fb_info->var);
-------------------------------------------------------------------------
kernel:fb_ioctl   // fbmem.cstruct fb_info *info = file_fb_info(file);do_fb_ioctl(info, cmd, arg);var = info->var;     // 硬件相关的驱动设置的ret = copy_to_user(argp, &var, sizeof(var)) ? -EFAULT : 0;

3. 获得固定信息(含有显存信息)

app:  	ioctl(fd, FBIOGET_FSCREENINFO, &fb_info->fix);
-------------------------------------------------------------------------
kernel:fb_ioctl   // fbmem.cstruct fb_info *info = file_fb_info(file);do_fb_ioctl(info, cmd, arg);fix = info->fix;     // 硬件相关的驱动设置的ret = copy_to_user(argp, &fix, sizeof(fix)) ? -EFAULT : 0;

4. mmap

app:void *ptr = mmap(0,fb_info->var.yres_virtual * fb_info->fix.line_length,PROT_WRITE | PROT_READ,MAP_SHARED, fd, 0);
-------------------------------------------------------------------------
kernel:fb_mmap   // fbmem.cstruct fb_info *info = file_fb_info(file);start = info->fix.smem_start;len = info->fix.smem_len;return vm_iomap_memory(vma, start, len);

3.2、实现"主线任务"

编写一个简单的FB设备驱动框架:

注:此处编写fb驱动只是为了更好的理解nxp官方的fb设备驱动代码。

代码如下:

#include <linux/module.h>  
#include <linux/kernel.h>  
#include <linux/platform_device.h>  
#include <linux/fb.h>  static struct fb_info *my_fb_info;  static struct fb_ops my_fb_ops = {  // .owner 应该在fb_info分配之后设置  // 其他操作函数根据需要进行实现  
};  static int my_simple_fb_probe(struct platform_device *pdev)  
{  int ret;  my_fb_info = framebuffer_alloc(0, &pdev->dev);  if (!my_fb_info) {  ret = -ENOMEM;  dev_err(&pdev->dev, "Cannot allocate framebuffer\n");  return ret;  }  my_fb_info->fbops = &my_fb_ops;  my_fb_info->var.xres = 800;  my_fb_info->var.yres = 600;  // 设置其他framebuffer参数...  my_fb_ops.owner = THIS_MODULE;  // 设置其他fb_ops函数指针...  ret = register_framebuffer(my_fb_info);  if (ret < 0) {  dev_err(&pdev->dev, "Cannot register framebuffer\n");  goto err_register_fb;  }  platform_set_drvdata(pdev, my_fb_info);  dev_info(&pdev->dev, "Simple framebuffer driver loaded\n");  return 0;  err_register_fb:  framebuffer_release(my_fb_info);  return ret;  
}  static int my_simple_fb_remove(struct platform_device *pdev)  
{  struct fb_info *info = platform_get_drvdata(pdev);  if (info) {  unregister_framebuffer(info);  framebuffer_release(info);  }  return 0;  
}  #ifdef CONFIG_OF  
static const struct of_device_id my_simple_fb_of_match[] = {  { .compatible = "vendor,my_simple_fb", },  {},  
};  
MODULE_DEVICE_TABLE(of, my_simple_fb_of_match);  
#endif  static struct platform_driver my_simple_fb_driver = {  .probe = my_simple_fb_probe,  .remove = my_simple_fb_remove,  .driver = {  .name = "my_simple_fb",  .of_match_table = of_match_ptr(my_simple_fb_of_match),  },  
};  module_platform_driver(my_simple_fb_driver);  MODULE_DESCRIPTION("Simple Framebuffer Platform Driver");  
MODULE_LICENSE("GPL");

三、浅析NXP自己的LCD控制器的驱动程序

①、nxp自己的驱动程序分析
在这里插入图片描述

注:相关的fbops结构体中函数指针所指向的函数都是通过配置寄存器实现的,需要对照寄存器手册。其实就是配置寄存器进而设置lcdif(imx6ull)工作需要的一些配置。

②、imx6ull的lcd控制器dts分析

上面只是浅析了.c文件的大概实现,下面查看一下设备树的实现,直接查看他们自己的evk板子的设备树。

&lcdif {pinctrl-names = "default";pinctrl-0 = <&pinctrl_lcdif_dat&pinctrl_lcdif_ctrl&pinctrl_lcdif_reset>;display = <&display0>;status = "okay";display0: display {bits-per-pixel = <16>;bus-width = <24>;display-timings {native-mode = <&timing0>;timing0: timing0 {clock-frequency = <9200000>;hactive = <480>;vactive = <272>;hfront-porch = <8>;hback-porch = <4>;hsync-len = <41>;vback-porch = <2>;vfront-porch = <4>;vsync-len = <10>;hsync-active = <0>;vsync-active = <0>;de-active = <1>;pixelclk-active = <0>;};};};
};pinctrl_lcdif_dat: lcdifdatgrp {fsl,pins = <MX6UL_PAD_LCD_DATA00__LCDIF_DATA00  0x79......MX6UL_PAD_LCD_DATA23__LCDIF_DATA23  0x79>;};pinctrl_lcdif_ctrl: lcdifctrlgrp {fsl,pins = <MX6UL_PAD_LCD_CLK__LCDIF_CLK	    0x79MX6UL_PAD_LCD_ENABLE__LCDIF_ENABLE  0x79MX6UL_PAD_LCD_HSYNC__LCDIF_HSYNC    0x79MX6UL_PAD_LCD_VSYNC__LCDIF_VSYNC    0x79>;};pinctrl_lcdif_reset: lcdifresetgrp {fsl,pins = </* used for lcd reset */MX6ULL_PAD_SNVS_TAMPER9__GPIO5_IO09  0x79>;};};

①、 &lcdif 节点:

  • pinctrl-namespinctrl-0:这两个属性用于配置LCD接口的引脚控制(pinctrl)。pinctrl-names 指定了控制组的名称(“default”),而 pinctrl-0 则引用了三个pinctrl组,分别用于数据(pinctrl_lcdif_dat)、控制信号(pinctrl_lcdif_ctrl)和复位信号(pinctrl_lcdif_reset)。
  • display:此属性引用了一个名为 display0 的子节点,该子节点包含了显示器的具体配置。
  • status:表示此设备的状态为 “okay”,意味着这个设备是激活和可用的。

②、 display0 节点:

  • bits-per-pixelbus-width:分别指定了每个像素使用的位数(16位)和总线宽度(24位)。
  • display-timings:这个节点包含了显示器的时序配置。
  • timing0 中,详细定义了显示器的各种时序参数,如 clock-frequency(时钟频率)、hactivevactive(水平和垂直有效像素数)、hfront-porchhback-porchhsync-len 等(水平时序参数),以及 vback-porchvfront-porchvsync-len 等(垂直时序参数)。此外,还定义了同步信号(hsync, vsync)和像素时钟的极性。
    ③、pinctrl组节点:
  • pinctrl_lcdif_datpinctrl_lcdif_ctrlpinctrl_lcdif_reset 分别定义了LCD数据线、控制线和复位线的引脚配置。在这些节点中,fsl,pins 属性指定了具体的引脚分配和配置。例如,MX6UL_PAD_LCD_DATA00__LCDIF_DATA00 0x79 表示将 LCD_DATA00 引脚分配给 LCDIF_DATA00 功能,并设置其配置为 0x79

这篇关于fb设备驱动框架分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/978613

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三