深度学习之前馈神经网络

2024-05-11 04:36

本文主要是介绍深度学习之前馈神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.导入常用工具包

#在终端中输入以下命令就可以安装工具包
pip install numpy
pip install pandas
Pip install matplotlib


numpy是科学计算基础包
pandas能方便处理结构化数据和函数
matplotlib主要用于绘制图表。

#导包的代码:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

2.导入数据集

2.1.数据集的下载与转换

数据集下载地址:http://yann.lecun.com/exdb/mnist/
在这里插入图片描述
:下载这四个文件,但由于不是csv的格式,所以我们要将这四个文件转换成csv格式。

import struct 
import numpy as np 
import pandas as pd#以二进制读取模式。struct.unpack('>IIII', f.read(16))从文件中读取前16个字节,并按照大端字节序解析出魔数、图像数量、行数和列数。
def read_mnist_image(filename):with open(filename, 'rb') as f:magic_number, num_images, num_rows, num_cols = struct.unpack('>IIII', f.read(16))image_data = np.fromfile(f, dtype=np.uint8).reshape(num_images, num_rows * num_cols)return image_data#读取MNIST数据集中的标签数据。与读取图像数据类似,它打开文件,解析魔数和标签数量,然后读取剩余的数据,将其转换为NumPy数组。
def read_mnist_labels(filename):with open(filename, 'rb') as f:magic_number, num_labels = struct.unpack('>II', f.read(8))label_data = np.fromfile(f, dtype=np.uint8)return label_data# 读取图像和标签文件
image_filename = 'train-images.idx3-ubyte'
label_filename = 'train-labels.idx1-ubyte'
images = read_mnist_image(image_filename)
labels = read_mnist_labels(label_filename)# 将图像和标签合并为一个DataFrame
train_Data = pd.DataFrame(images)
train_Data['label'] = labels# 保存为CSV文件
train_Data.to_csv('mnist_train.csv', index=False)# 对测试数据进行相同的操作
image_filename = 't10k-images.idx3-ubyte'
label_filename = 't10k-labels.idx1-ubyte'
images = read_mnist_image(image_filename)
labels = read_mnist_labels(label_filename)
test_Data = pd.DataFrame(images)
test_Data['label'] = labels
test_Data.to_csv('mnist_test.csv', index=False)

数据集图片:
在这里插入图片描述

2.2.数据观察

import pandas as pd
train_Data = pd.read_csv('mnist_train.csv',header = None)
test_Data = pd.read_csv('mnist_test.csv',header = None)
print("Train data:")
train_Data.info()
print("Test data:")
test_Data.info()
#继续观察训练数据前五行
train_Data.head(5)

:可以发现训练数据中包含60000个数据样本,维度785,包括标签信息与784个特征维度;测试数据中包含10000个样本,维度785,包括标签信息与784个特征维度。
运行结果:
在这里插入图片描述

2.3.读取第一行数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#取第一行数据
x = train_Data.iloc[0]
#标签信息
y = x[0]
#将1*784转换成28*28
img = x[1:].values.reshape(28,28)
#画图
plt.imshow(img)
plt.title('label = ' + str(y))
plt.show()

:这段代码的主要作用是从训练数据集中取出第一行数据,将其中的图像数据转换为28x28的二维数组,并使用matplotlib库显示这个图像。同时,它还展示了图像对应的标签(即手写数字的类别)。
运行结果:
在这里插入图片描述

2.4.从sklearn中导入数据并观察

from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1)
mnist.keys()

运行结果:
在这里插入图片描述

2.5.打印维度信息

data, label = mnist["data"], mnist["target"]
print("数据维度:", data.shape)
print("标签为度:", label.shape)

:这段代码从之前使用fetch_openml函数获取的MNIST数据集字典中提取出图像数据(data)和标签(label),并打印它们的维度信息。

2.6.显示第一幅图像及其对应的标签

x = data.iloc[0]
y = label[0] #从label数组中取出第一个元素,即第一幅图像的标签
img = x.values.reshape(28,28)
plt.imshow(img)
plt.title('label = ' + str(y))
plt.show()

运行结果
在这里插入图片描述

3.数据预处理

X = train_Data.iloc[:,1:].values#样本数据
y = train_Data.iloc[:,0].values#样本标签
print("数据X中最大值:",X.max())
print("数据X中最小值:",X.min())

运行结果:
在这里插入图片描述

3.1.对X进行归一化处理

#归一化
X = X/255
#此时将数值大小缩小在[01]范围内,重现观察数据中的最大、最小值
print("数据X中最大值:",X.max())
print("数据X中最小值:",X.min())

:这段代码的目的是对数据集X进行归一化处理,并将处理后的数据范围缩放到[0, 1]之间。
运行结果:
在这里插入图片描述

3.2.分类

X_valid, X_train = X[:5000], X[5000:]
y_valid, y_train = y[:5000], y[5000:]X_test,y_test = test_Data.iloc[:,1:].values/255, test_Data.iloc[:,0].values

:将数据集分割为训练集、验证集和测试集,并对这些数据集进行归一化处理。

4.前馈全连接神经网络(Sequential模型)

4.1.创建模型

import tensorflow as tf
from tensorflow import keras
model = keras.models.Sequential([keras.layers.Flatten(input_shape=[784]),#输入层784个神经元keras.layers.Dense(300, activation="relu"),#隐藏层300个神经元keras.layers.Dense(100, activation="relu"),#隐藏层100个神经元keras.layers.Dense(10, activation="softmax")#输入层10个神经元
])
model.layers[1]
weight_l,bias_l = model.layers[1].get_weights()
print(weight_l.shape)
print(bias_l.shape)

:通过打印权重和偏置的形状,可以确认模型的第一个隐藏层是否正确地连接到输入层,并且可以了解该层的参数数量。这对于调试和理解模型的结构非常重要。在实际应用中,这些权重和偏置会在模型训练过程中通过反向传播算法自动调整,以最小化预测误差。
运行结果
在这里插入图片描述

4.2.通过.summary()观察神经网络的整体情况

model.summary()

:model.summary()是Keras模型的一个方法,它用于打印出模型的概述信息。
运行结果:
在这里插入图片描述

4.3.训练网格

#编译网络
model.compile(loss="sparse_categorical_crossentropy",optimizer="sgd",metrics=["accuracy"])

:是Keras中的一个重要步骤,它用于编译刚刚创建的神经网络模型。编译过程定义了模型训练时需要使用的损失函数、优化器和评估指标。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
h = model.fit(X_train,y_train,batch_size=32,epochs=30,validation_data=(X_valid,y_valid))

:epochs=30:训练过程中遍历整个训练数据集的次数。每个时期包含一次完整的训练数据遍历。
运行结果:
在这里插入图片描述

4.4.将Keras的History对象转换为Pandas的DataFrame

pd.DataFrame(h.history)

:h.history属性是一个字典,其中包含了训练过程中的损失值和评估指标值。
运行结果:
在这里插入图片描述

4.5.绘图

#绘图
pd.DataFrame(h.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)#set the vertical range to [0-1]
plt.show()


Loss(损失):损失函数的值越低,表示模型的预测越接近实际值。
Accuracy(准确率):准确率是指模型正确预测的样本数与总样本数之间的比例。
Val Loss(验证损失):如果训练损失持续下降,但验证损失开始上升,这可能表明模型出现了过拟合。
Val Accuracy(验证准确率):用于评估模型的泛化能力,并且是模型性能的一个重要指标。
运行结果:
在这里插入图片描述

4.6.识别准确率

model.evaluate(X_test, y_test, batch_size = 1)

:使用Keras模型的evaluate方法来评估模型在测试集上的性能。evaluate方法会计算并返回模型在给定测试数据上的损失和评估指标。
运行结果:
在这里插入图片描述

4.7.对样本进行预测

x_sample, y_sample = X_test[11:12], y_test[11]
y_prob = model.predict(x_sample).round(2)
y_probimg = x_sample.reshape(28,28)
plt.imshow(img)
plt.title('label = ' + str(np.argmax(y_prob)))
plt.show()

:从测试数据集中选取索引为11的单个样本,并将其特征和标签分别存储在x_sample和y_sample中。这里使用切片[11:12]来确保x_sample是一个二维数组,符合模型的输入要求。
运行结果:
在这里插入图片描述
在这里插入图片描述

5.使用Sequential()方法,对鸢尾花数据集进行分类

5.1划分

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_splitiris = load_iris()  #鸢尾花数据集x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.2,random_state=23)X_train,X_valid,y_train,y_valid = train_test_split(x_train,y_train,test_size=0.2,random_state=12)print(X_valid.shape)
print(X_train.shape)

:从Scikit-learn的model_selection模块中导入train_test_split函数,用于分割数据集。
运行结果:
在这里插入图片描述

5.2. 构建模型

import tensorflow as tf
from tensorflow import kerasmodel = keras.models.Sequential([keras.layers.Flatten(input_shape=[4]),keras.layers.Dense(16,activation='relu'),keras.layers.Dense(16,activation='relu'),keras.layers.Dense(16,activation='relu'),keras.layers.Dense(16,activation='relu'),keras.layers.Dense(16,activation='relu'),keras.layers.Dense(16,activation='relu'),keras.layers.Dense(16,activation='relu'),keras.layers.Dense(16,activation='relu'),keras.layers.Dense(16,activation='relu'),keras.layers.Dense(16,activation='relu'),keras.layers.Dropout(rate=0.2),keras.layers.Dense(3,activation='softmax'),
])model.summary()

:这段代码使用TensorFlow和Keras库创建了一个神经网络模型,用于分类鸢尾花数据集。模型的结构是顺序的,包含了多个全连接层(Dense layers)和一个Dropout层。
运行结果
在这里插入图片描述

5.3.提高准确率添加方式:keras.layers.Dropout(rate=0.2)

model.layers[1]

:从之前定义的Keras模型中获取第二个层的对象。在Keras模型中,层是按照它们添加到模型中的顺序存储在一个列表中的,索引从0开始。因此,model.layers[1]将返回模型中第一个隐藏层的对象。

weight_1,bias_1 = model.layers[1].get_weights()print(weight_1.shape)
print(bias_1.shape)

运行结果:
在这里插入图片描述
:从之前定义的Keras模型中获取第一个隐藏层的权重和偏置,并打印它们的形状。

model.compile(loss='sparse_categorical_crossentropy',optimizer='sgd',metrics=["accuracy"])h = model.fit(X_train,y_train,batch_size=10,epochs=50,validation_data=(X_valid,y_valid))

:optimizer=‘sgd’:这是模型训练时使用的优化器。sgd代表随机梯度下降(Stochastic Gradient Descent),它是一种简单的优化算法,用于在训练过程中更新模型的权重。
运行结果:
在这里插入图片描述

pd.DataFrame(h.history)

运行结果:
在这里插入图片描述

pd.DataFrame(h.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()

运行结果:
在这里插入图片描述

model.evaluate(x_test,y_test,batch_size = 1)


x_test:测试数据集的特征,通常是NumPy数组或TensorFlow张量。
y_test:测试数据集的标签,与x_test中的每个样本相对应。
batch_size = 1:评估过程中每次前向传播所使用的数据样本数量。
运行结果:

在这里插入图片描述

这篇关于深度学习之前馈神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978522

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实