C++动态内存管理:与C语言动态内存管理的差异之争

2024-05-11 04:12

本文主要是介绍C++动态内存管理:与C语言动态内存管理的差异之争,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当你改错一行代码的时候:

当你想要重构别人的代码时:

目录

前言

一、C/C++的内存分布

二、C/C++语言中的动态内存管理

 三、new与delete的实现原理

总结:

 


前言

在C++中,内存管理是一个至关重要的主题。正确地管理内存可以避免内存泄漏和内存访问错误等问题,提高程序的性能和可靠性。本文将深入探讨C++中的内存管理机制,包括从C语言内存管理到C++内存管理转变,二者的关联等内容。

一、C/C++的内存分布

C/C++程序内存主要使用了以下几个区域,让我们先来认识一下:

1、内核区域:

“内核区域”通常指的是操作系统的核心部分,它是操作系统的基本组成部分之一。内核负责管理计算机的硬件资源,并提供给应用程序访问这些资源的接口。但是我们用户的代码读写不了它,所以这里也不主要讲解。

2、栈区:

栈区是计算机内存中的一部分,用于存储函数调用时的局部变量、函数参数、函数返回地址等临时数据。栈是一种后进先出(LIFO)的数据结构,因此栈区也被称为后进先出(LIFO)内存区域。

在典型的程序执行过程中,每当一个函数被调用时,该函数的局部变量和参数被分配到栈区,并且该函数的返回地址被推入栈中。当函数执行完成后,栈中的这些数据被销毁,栈的指针回退到上一个函数的栈帧。这种方式使得程序能够有效地管理函数调用和返回。

栈区的大小通常是固定的,由操作系统在程序启动时分配。如果栈区的空间被耗尽,就会发生栈溢出(stack overflow)错误,这通常是由于递归函数调用层数过多或者局部变量占用过多栈空间所导致的。

3、内存映射段:

存映射段(Memory-mapped segment)是指操作系统中的一种机制,它允许将文件或其他设备映射到进程的地址空间,使得这些文件或设备能够像内存一样被访问和操作。(我们这里也不讲解,只是单纯提一下)

4、堆区:

堆区是计算机内存中的一部分,用于动态分配内存空间。在堆区中,程序员可以通过调用诸如 malloc()、calloc() 或 new 等函数来请求内存空间,用于存储程序中动态创建的数据结构,比如链表、树、对象等。(也就是我们今天所要讲解的动态内存管理所涉及的区域)

5、数据段:

数据段(Data Segment)是指存储程序中已声明的全局变量和静态变量的内存区域。数据段通常位于进程的虚拟地址空间中的一个固定位置,并且在程序加载时被分配。(全局变量与static修饰的变量)

(静态变量主要有三种方式:

1、在函数内部使用 static 关键字声明

2、在全局作用域内使用 static 关键字声明

3、在函数内部不使用 static 关键字,但函数外部使用 static 修饰该函数

6、代码段:

代码段中通常存储着可执行的程序与只读常量如我们规定的“a,n,f,j”等字符

二、C/C++语言中的动态内存管理

1、C语言:

在C语言中,我们通常使用malloc/calloc/realloc/free四个关键字来管理我们的动态内存分配。

malloc()函数:

  • void *malloc(size_t size);
  • 用于动态分配指定大小的内存块。
  • 返回一个指向分配的内存块的指针,或者在分配失败时返回 NULL。

calloc()函数 :

  • void *calloc(size_t num, size_t size);
  • 用于动态分配指定数量和大小的内存块,并将其初始化为零。
  • 返回一个指向分配的内存块的指针,或者在分配失败时返回 NULL。

realloc()函数;

  • void *realloc(void *ptr, size_t size);
  • 用于更改之前分配的内存块的大小。
  • 返回一个指向重新分配的内存块的指针,或者在分配失败时返回 NULL。

 free()函数:

  • void free(void *ptr);
  • 用于释放之前分配的内存块。

 在C语言中,malloc()等函数会返回 void* 类型的指针,需要强制类型转换为目标类型,这使得使用十分不方便。而C++内存管理只需要用new与delete两个运算符就可以做得更加高级,更加安全便捷。

2、C++:
C++中用 newdelete 运算符来动态地分配和释放内存。

new运算符:

  • new 运算符用于动态分配内存空间,并返回所分配内存的地址。
  • new 运算符的基本语法为:new 数据类型new 数据类型[数组大小]
  • 动态分配的内存必须由程序员显式地释放,否则会造成内存泄漏。

delete运算符:

  • delete 运算符用于释放动态分配的内存空间。
  • delete 运算符的基本语法为:delete 指针变量delete[] 指针变量(释放数组)。
  • 动态分配的内存在不再使用时必须由程序员显式地释放,否则会造成内存泄漏。

 (其实在C++11中还新增了智能指针的概念,但现在我们先不提及)

int main()
{int* arr = new int[10];// 分配一个包含10个整数的内存块int* ptr = new int; // 动态分配一个整数的内存空间int* ptr2 = new int(10); // 动态分配一个整数的内存空间并且初始化为10delete ptr;delete ptr2;//释放内存delete[] arr;//加上[]表示多个数据return 0;
}

//分配自定义类型class A
{
public:A(int a = 0):_a(a){cout << "A():" << endl;}~A(){cout << "~A():" << endl;}
private:int _a;};int main()
{A* ptr1 = new A;A* ptr2 = (A*)malloc(sizeof(A));delete ptr1;free(ptr2);return 0;
}
结果可以发现,我们在new与delete的时候会自动调用自定义类型的构造与析构函数,而C的malloc与free则不会。
new delete 是用户进行 动态内存申请和释放的操作符 operator new operator delete
系统提供的 全局函数 new 在底层调用 operator new 全局函数来申请空间, delete 在底层通过
operator delete 全局函数来释放空间。

实际上,operator new 实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。(以后讲解异常概念)operator delete 最终是通过free来释放空间的

 三、new与delete的实现原理

1、对于内置类型来说:

new与malloc,delete与free基本类似,不同的地方是:

new与delete申请与释放的是单个元素的空间,new[]与delete[]申请与释放的是连续的空间,而且new在申请失败时会抛出异常,malloc则会直接返回NULL。

2、对于自定义类型来说:

new的原理:

1. 调用 operator new 函数申请空间
2. 在申请的空间上执行构造函数,完成对象的构造
delete的原理
 
1. 在空间上执行析构函数,完成对象中资源的清理工作
2. 调用 operator delete 函数释放对象的空间
new T[N] 的原理:
1. 调用 operator new[] 函数,在 operator new[] 中实际调用 operator new 函数完成 N 个对
象空间的申请
2. 在申请的空间上执行 N 次构造函数
delete[] 的原理
1. 在释放的对象空间上执行 N 次析构函数,完成 N 个对象中资源的清理
2. 调用 operator delete[] 释放空间,实际在 operator delete[] 中调用 operator delete 来释
放空间

总结:

malloc/free new/delete 的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地
方是:
1. mallocfree是函数,newdelete是操作符
2. malloc申请的空间不会初始化,new可以初始化
3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,
如果是多个对象,[]中指定对象个数即可
4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new
要捕获异常
6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new
在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成
空间中资源的清理

 

希望通过本篇文章,能够对你区分C++与C语言内存管理有所帮助。

这篇关于C++动态内存管理:与C语言动态内存管理的差异之争的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978468

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

在Node.js中使用.env文件管理环境变量的全过程

《在Node.js中使用.env文件管理环境变量的全过程》Node.js应用程序通常依赖于环境变量来管理敏感信息或配置设置,.env文件已经成为一种流行的本地管理这些变量的方法,本文将探讨.env文件... 目录引言为什么使php用 .env 文件 ?如何在 Node.js 中使用 .env 文件最佳实践引

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl