Android GPU渲染SurfaceFlinger合成RenderThread的dequeueBuffer/queueBuffer与fence机制(2)

本文主要是介绍Android GPU渲染SurfaceFlinger合成RenderThread的dequeueBuffer/queueBuffer与fence机制(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Android GPU渲染SurfaceFlinger合成RenderThread的dequeueBuffer/queueBuffer与fence机制(2)

 

计算fps帧率

adb shell dumpsys SurfaceFlinger --list

查询当前的SurfaceView,然后有好多行,再把要查询的行内容完整的传给

adb shell dumpsys SurfaceFlinger --latency 窗口名

输出一堆数字,第一行数字是当前的 VSYNC 间隔,单位纳秒。如果屏幕是 60Hz ,就是 16.6ms,然后下面一堆数字,总共有 127 行,每一行有 3 个数字,每个数字都是时间戳,单位是纳秒。

Android 显示一帧大致分为几个步骤
1,App 接收到 vsync-app 信号后开始工作。
2,App 主线程被Message唤醒,执行onVsync。
3,App 执行 doFrame ,处理input、animation、traversal、draw等。
4,App UIThread 跟RenderThread sync 数据。
5,App 执行DrawFrame,从SurfaceFlinger(后续简称SF) 的 BufferQueue 中 dequeueBuffer,取出一个bufffer后,执行渲染绘制,接着将绘制好的Buffer 通过queueBuffer 放回到BufferQueue中给 SF消费。
6,App queueBuffer 后, SF 中对应的 app buffer 会增加 +1。
7,Vsync-sf 到来后,SF 从BufferQueue 中 acquireBuffer一个Buffer 进行消费, 对应SF 中的 app buffer 会减 - 1 , SF 消费处理后,通过 releaseBuffer 将buffer 归还到BufferQueue 中。
8,SF 通过 bind 跟 Hardware Composer HAL(HWC) 进行通信,通过一些处理后显示到手机屏幕上。

d48e7b7a06d948899b32b527b87c66e7.webp

dequeue(生产者发起) :
当生产者需要缓冲区时,它会通过调用 dequeueBuffer() 从 BufferQueue 请求一个可用的缓冲区,并指定缓冲区的宽度、高度、像素格式和使用标记。
queue(生产者发起):
生产者填充缓冲区并通过调用 queueBuffer() 将缓冲区返回到队列。
acquire(消费者发起) :
消费者通过 acquireBuffer() 获取该缓冲区并使用该缓冲区的内容。
release(消费者发起) :
当消费者操作完成后,它会通过调用 releaseBuffer() 将该缓冲区返回到队列。

b1693a8c24824eaf8e54b84d84dba931.png
 

App 绘制的图像内容是怎么最终显示到手机屏幕?

App 要显示的内容要绘制在 Buffer 里,这个 Buffer 是从 BufferQueue 通过 dequeueBuffer() 申请。申请到 Buffer 后,App 将内容填充到 Buffer ,通过 queueBuffer() 将 Buffer 还回去交给 SurfaceFlinger 去进行合成和显示。然后,SurfaceFlinger 开始合成时候,调用 acquireBuffer() 从 BufferQueue 里面拿一个 Buffer 合成,合成完以后通过 releaseBuffer() 将 Buffer 还给 BufferQueue。

a388fd254642416d8af4e726c88f3678.webp

RenderThread 的 dequeueBuffer
dequeue 出队,dequeueBuffer 就是从队列中拿出一个 Buffer,这个队列就是 SurfaceFlinger 中的 BufferQueue。app开始渲染前,首先需要通过 Binder 调用从 SurfaceFlinger 的 BufferQueue 中获取一个 Buffer。

a089a2ede3af44a8ba2924305633f5a3.jpeg

RenderThread 的 queueBuffer
queue 入队,queueBuffer 是把 Buffer 放回到 BufferQueue,App 处理完 Buffer 后,会把这个 Buffer 通过 eglSwapBuffersWithDamageKHR -> queueBuffer ,将 Buffer 放回 BufferQueue。

759d4f6f2ef3460a924d9af08c02c9dd.jpeg

上面流程有一个问题,在 App 绘制完通过 queueBuffer() 将 Buffer 还回时候,此时仅仅只是 CPU 侧完成,GPU 实际上有没有真正完成,CPU并不知道。因此如果此时GPU拿这个 Buffer 去合成/显示,就会有问题(Buffer 可能还没有完全绘制完)。由于 CPU 和 GPU 是异步的,因此CPU在代码里执行一系列绘图函数调用后,看上去函数已经返回,实际上,具体什么时候被GPU真正执行完毕 CPU 不知道,除非阻塞等待这些命令完全执行完,但这样会带来严重的性能问题,因为这样使得 CPU 和 GPU 的并行完全丧失,CPU 会在 GPU 完成之前一直处于空等状态。因此,需要一种机制,在不需要对 Buffer 进行读写时候,大家各干各的;当需要对 Buffer 进行读写时候,CPU可以知道此时 Buffer 在 GPU 的状态,必要时候等一下。

fence 是这样的同步机制——“栅栏”,把东西拦住。fence 要拦住什么东西呢?就是 Buffer。Buffer 在整个绘制、合成、显示过程中,一直在 CPU,GPU 和 HWC 之间传递,某一方要使用 Buffer 前,需要检查之前的使用者是否已经移交 Buffer 的“使用权”。而这里的“使用权”,就是 fence。当 fence 释放(即 signal)时候,说明 Buffer 的上一个使用者已经交出了使用权,对于 Buffer 进行操作是安全的。

Android 总共有三类 fence —— acquire fence,release fence 和 present fence。

•acquire fence
    App 将 Buffer 通过 queueBuffer() 还给 BufferQueue 的时候,此时该 Buffer 的 GPU 侧其实未必完成,此时会带上一个 fence,这个 fence 就是 acquire fence。当 SurfaceFlinger/ HWC 要读取 Buffer 以进行合成操作的时候,需要等 acquire fence 释放之后才行。
•release fence
    当 App 通过 dequeueBuffer() 从 BufferQueue 申请 Buffer,要对 Buffer 进行绘制时候,需要保证 HWC 已经不再需要这个 Buffer 了,即需要等 release fence signal 才能对 Buffer 进行写操作。
•present fence
    当前帧成功显示到屏幕的时候,present fence 就会 signal。

d80f0e75cf0e4332b213b47447829bd9.png

每一个buffer都一个Fence状态,代表这块buffer是否还在被上一个使用者使用完,并且在转移时都会携带当前Fence的fd,然后可以调用Fence的wait或者waitForever查询Fence状态,如果还在使用则等待,否则就可以使用。Fence按作用大体分两种:acquireFence和releaseFence。前者用于生产者通知消费者生产已完成,后者用于消费者通知生产者消费已完成。

Fence保证GraphicBuffer在App, GPU和HWC三者间流转时数据读写同步(不同进程 or 不同硬件间同步)。
从 SurfaceFlinger 的角度来看,App 部分主要负责生产 SurfaceFlinger 合成所需要的 Surface。
App 与 SurfaceFlinger 的交互主要集中在三点
1 Vsync 信号的接收和处理
2 RenderThread 的 dequeueBuffer
3 RenderThread 的 queueBuffer

384e0ea30071463c943b7132e063a0e3.jpeg
 

从 dumpsys SurfaceFlinger --latency 获取最新 127 帧的 present fence 的 signal time,当某帧 present fence 被 signal 时候,说明这一帧已经被显示到屏幕上。因此,可以通过判断1秒内有多少个 present fence signal ,反推出一秒内有多少帧被刷新(显示)到屏幕上,从而计算出 fps。

统计一秒内 App 往屏幕刷了多少帧,在 Android 里,每一帧显示到屏幕的标志是:present fence signal ,因此计算 App 的 fps 就可以转换为:一秒内 App 的 Layer 有多少个有效 present fence signal 。

 

 

 

Android adb shell命令捕获systemtrace_android 抓trace-CSDN博客文章浏览阅读1.7k次,点赞2次,收藏5次。Android ADB调试真机设备Android ADB(Andorid Debug Bridge),是Android开发中有用的测试和调试工具。使用Android ADB调试设备,直接在Windows的dos命令窗口输入命名adb即可,如图:为什么执行adb命令后是这样?Android ADB(Andorid Debug Bridge)调试真机设备_adb在线执行器_zhangphil的博客-CSDN博客。-t 时长,20s,20秒的trace文件。-o 保存文件路径。_android 抓tracehttps://blog.csdn.net/zhangphil/article/details/131249820

Android GPU渲染屏幕绘制显示基础概念(1)-CSDN博客文章浏览阅读696次,点赞20次,收藏12次。CPU返回后,会直接将GraphicBuffer提交给SurfaceFlinger,告诉SurfaceFlinger进行合成,但是这个时候GPU可能并未完成之前的图像渲染,这时候就牵扯到一个同步,Android中,用的是Fence机制,SurfaceFlinger合成前会查询Fence,如果GPU渲染没有结束,则等待GPU渲染结束,GPU结束后,会通知SurfaceFlinger进行合成,SF合成后,提交显示,最终完成图像的渲染显示。而对SF来说,只要有合成任务,它就得再去申请VSYNC-sf。https://blog.csdn.net/zhangphil/article/details/138585120Android性能:Double Buffer双缓冲/Triple Buffer三缓冲丢帧Jank与无丢帧No Jank-CSDN博客文章浏览阅读858次,点赞6次,收藏13次。Android ADB调试真机设备Android ADB(Andorid Debug Bridge),是Android开发中有用的测试和调试工具。使用Android ADB调试设备,直接在Windows的dos命令窗口输入命名adb即可,如图:为什么执行adb命令后是这样?_android 抓trace。三Buffer轮转情况下,基本不会有这种情况的发生,渲染线程一般在 dequeueBuffer 时,都可以顺利拿到可用的 Buffer (如果 dequeueBuffer 本身耗时那就也会拉长时间)。https://blog.csdn.net/zhangphil/article/details/138213964

 

这篇关于Android GPU渲染SurfaceFlinger合成RenderThread的dequeueBuffer/queueBuffer与fence机制(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978070

相关文章

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont