动手学深度学习——多层感知机

2024-05-10 23:44

本文主要是介绍动手学深度学习——多层感知机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 感知机

感知机本质上是一个二分类问题。给定输入x、权重w、偏置b,感知机输出:

以猫和狗的分类问题为例,它本质上就是找到下面这条黑色的分割线,使得所有的猫和狗都能被正确的分类。

与线性回归和softmax的不同点:

  • vs 线性回归:输出的都是一个数,但线性回归输出的是实数,而感知机输出的是离散的分类。
  • vs softmax: softmax是一个多分类(如果有n个分类,softmax就会输出n个元素),而感知机只输出一个元素。

感知机存在的问题: 它只能产生线性分割面,对于XOR(异或)函数,无法拟合(一条线不论怎么分割,都无法将绿色和红色分类正确)。

2. 多层感知机(MLP)

对于上面单层感知机的问题,一个改进思想是:一层函数如果做不了,就用多层函数来做,而多层就带来了网络,用不同层解决不同的问题,多层配合来解决更复杂的问题。

可以使用蓝线对所有数据进行x轴方向的正负分类,再使用黄线对所有数据进行y轴方向的正负分类,最后再将两次分类结果进行xor运算就能得到结果。

多层感知机使用隐藏层和激活函数来得到非线性模型。

在softmax基础上多了隐藏层。可选超参:

  • 隐藏层数
  • 每个隐藏层的宽度,通常选择2的若干次冥作为层的宽度

这两个参数的选择取决于输入和输出的复杂度

对复杂的输入,输入维度一般比较高,输出一般会比较少,有两种处理办法:

  1. 做单隐藏层,把模型做平,层的大小设大一点
  2. 做多隐藏层,把模型做深,层的大小可以设小一点,每层的维度逐步减少(如果每层维度都高,则会导致模型太大)

复杂输入到简单输出本质上是一个信息压缩的过程,多层逐步压缩能避免一次压缩太大导致信息损失太严重,例如:128->64->32->16->8
也可以先expand,从128->256->64->32->16->8

3. 激活函数

作用:在神经网络中引入非线性,可以理解为一个开关,当输入信号超过一定阀值时,神经元会被激活并产生输出,而未超过阀值时神经元将会被抑制。

在没有激活函数的情况下,神经网络只能表示线性映射,无法处理复杂的非线性关系。激活函数的作用就是线性结果映射到一个非线性的输出,以帮助神经网络更好的适应输入数据,提高非线性拟合能力。

举例:一个邮件过滤模型中的神经元,负责对输入邮件的特征(长度、关键词等)进行加权求和,但这个结果只是一个连续的数值我们交

激活函数不能是线性函数,否则会变成单层感知机,依然会存在线性分割面无法处理XOR的问题。

激活函数主要作用于隐藏层。

激活函数的几种选择:

  1. sigmoid: 对于任意输入x,都能投影到0~1区间内。

  2. tanh(x): 将输入投影到[-1,1]区间内

  1. ReLU: 就是一个Max函数(常用),特点是计算很快,相比前面基于指数运算的sigmoid和tanh函数都快很多(一次指数运算要100个时钟周期)

对ReLU函数求导,小于等于0时都是0,大于0时都是1,最终结果就是一个二分类。

4. 代码实现

4.1 初始化参数

我们将实现一个具有单隐藏层的多层感知机, 这个隐藏层包含128个隐藏单元。

对于每一层我们都要记录一个权重矩阵和一个偏置向量,并指定requires_grad=True来记录参数梯度。

import torch
from torch import nn
from d2l import torch as d2lnum_inputs, num_outputs, num_hiddens = 784, 10, 128W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))params = [W1, b1, W2, b2]

通常,我们选择2的若干次幂作为层的宽度。 因为内存在硬件中的分配和寻址方式,这么做往往可以在计算上更高效。

4.2 加载数据集

这里继续使用Fashion-MNIST图像分类数据集。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

4.3 激活函数

Relu函数的实现比较简单,就是一个max函数的调用, 它将输入的负值部分截断为0,保留正值部分不变。

def relu(X):a = torch.zeros_like(X)return torch.max(X, a)
  • torch.zeros_like(X): 创建了一个与X具有相同形状的全零张量a。
  • torch.max(X, a): 对于输入X中的每个元素,如果它是正值,则该元素保留不变;如果它是负值,则将其替换为0。

4.4 模型

def net(X):X = X.reshape((-1, num_inputs))    H = relu(X@W1 + b1)  # 隐藏层,这里“@”代表矩阵乘法return (H@W2 + b2)   # 输出层
  1. 使用reshape将输入的二维图像转换为一个长度为num_inputs=784的向量;
  2. 用ReLu函数对隐藏层的线性输出进行激活,得到输出张量H;
  3. 最后,由张量H和权重矩阵W2进行矩阵乘法操作,将偏置向量b2加到结果上,得到预测输出结果。

4.5 损失函数

这里直接使用pytorch中内置的交叉熵损失函数。

loss = nn.CrossEntropyLoss(reduction='none')

4.6 训练

多层感知机的训练过程与softmax的训练过程完全相同,可以直接调用之前定义过的train_ch3函数。

# 将迭代周期数设置为10,并将学习率设置为0.1.
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

训练过程中的模型损失和精度的收敛变化:

epoch: 1, loss: 1.1021366075515746, test_acc: 0.7544
epoch: 2, loss: 0.6142196039199829, test_acc: 0.8004
epoch: 3, loss: 0.5257990721384684, test_acc: 0.8061
epoch: 4, loss: 0.4842481053034465, test_acc: 0.7988
epoch: 5, loss: 0.4575055497487386, test_acc: 0.8266
epoch: 6, loss: 0.4389862974802653, test_acc: 0.8382
epoch: 7, loss: 0.42252545185089113, test_acc: 0.8443
epoch: 8, loss: 0.40933472124735515, test_acc: 0.8458
epoch: 9, loss: 0.3975078603744507, test_acc: 0.8467
epoch: 10, loss: 0.38488629398345947, test_acc: 0.8527

基于之前softmax模型上定义的预测函数,在测试数据集上使用这个模型做验证:

predict_ch3(net, test_iter)

在这里插入图片描述

这篇关于动手学深度学习——多层感知机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977898

相关文章

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?