魔性的float浮点数精度问题

2024-05-10 18:48

本文主要是介绍魔性的float浮点数精度问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从一个问题引入

如果你以前接触过C语言,那么对下面的这段代码一定很熟悉:

#include <stdio.h>int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;printf("f_num1 = %f\n", f_num1);printf("f_num2 = %f\n", f_num2);printf("f_num1 + f_num2 = %f\n", f_num1 + f_num2);return 0;
}

相信很多人不用运行,能够直接报出答案, f_num1 = 21.75, f_num2 = 13.45, f_num1 + f_num2 = 35.2,无论是从常识还是理论角度都不难理解。
下面我们运行一下程序,验证我们的猜测正不正确:

f_num1 = 21.750000
f_num2 = 13.450000
f_num1 + f_num2 = 35.200001

f_num1f_num2的结果和我们预想的一样,之所以后面多了四个0,是因为%f默认保留6位有效数字。但是f_num1 + f_num2的结果是什么鬼,这个35.200001是从哪里来的?
是不是一下子颠覆了我们的认知?
惊不惊喜,意不意外,刺不刺激?是不是发现自从学了C语言,连简单的算术都不会算了?
别急,还有更令你崩溃的。

如果是C++呢

下面我们看看以上程序的C++版本:

#include<iostream>
using namespace std;int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;cout << "f_num1 = " << f_num1 << endl;cout << "f_num2 = " << f_num2 << endl;cout << "f_num1 + f_num2 = " << f_num1 + f_num2 << endl;return 0;
}

直接来看输出结果吧:

f_num1 = 21.75
f_num2 = 13.45
f_num1 + f_num2 = 35.2

很神奇是不是?因为这个结果看起来正常多了。
看到这里,相信我们的心里都有老大一个疑问:为什么C程序和C++程序对同样的数字处理,输出的结果却不一样的?cout到底做了些什么?

cout的神奇之处

为了验证cout对浮点数的处理,我们不妨看一下下面的程序:

#include <iostream>
using namespace std;int main(void)
{float num1 = 5;float num2 = 5.00;float num3 = 5.14;float num4 = 5.140000;float num5 = 5.123456;float num6 = 5.987654321;cout << "num1 = " << num1 << endl;cout << "num2 = " << num2 << endl;cout << "num3 = " << num3 << endl;cout << "num4 = " << num4 << endl;cout << "num5 = " << num5 << endl;cout << "num6 = " << num6 << endl;return 0;
}

看结果来分析比较直观,运行以上程序,结果如下:

num1 = 5
num2 = 5
num3 = 5.14
num4 = 5.14
num5 = 5.12346
num6 = 5.98765

num1num2num3num4这两组结果可以知道,cout对于float类型数值小数点后面的0是直接省去了的(这点和C语言格式化输出的%g有点像)。
num5num6两组结果不难分析出,cout对于浮点型数值,最多保留6位有效数字。
以上是cout处理浮点数时的特点,应该记住。
事实上,我们使用iostream库里的cout.setf不难使cout恢复精度。我们对上面的代码修改如下:

#include<iostream>
using namespace std;int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;cout.setf(ios_base::fixed, ios_base::floatfield);       cout << "f_num1 = " << f_num1 << endl;cout << "f_num2 = " << f_num2 << endl;cout << "f_num1 + f_num2 = " << f_num1 + f_num2 << endl;return 0;
}

输出的结果就与C语言版本一模一样了:

f_num1 = 21.750000
f_num2 = 13.450000
f_num1 + f_num2 = 35.200001

答案呼之欲出

文章写到这里,相信你已经看出来问题的所在了。
不错,之所以结果不一样,正是由于精度引起的!
让我们回顾一下官方教材里关于float精度的描述:

浮点型和表示单精度、双精度和扩展精度值。C++标准指定了一个浮点数有效位数的最小值,然而大多数编译器都实现了更高的精度。 通常,float以一个字(32比特)来表示,double以2个字(64比特)来表示,long double 以3或4个字(96或128比特)来表示。一般来说,类型floatdouble分别有7和16个有效位;类型long double则常常被用于有特殊浮点需求的硬件,它的具体实现不同,精度也各不相同。(《C++ Primer第五版》

由以上描述,我们不难知道,对于float来说,最多只有7个有效位,这也就意味着,当实际存储的精度大于float的精度范围时,就会出现精度丢失现象。
为了进一步佐证上述问题,我们不妨将float的数值放大10亿倍,看看里面存储的值到底是多少:

#include<iostream>
using namespace std;int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;cout.setf(ios_base::fixed, ios_base::floatfield);int billion = 1E9;float f_num10 = f_num1 * billion;float f_num20 = f_num2 * billion;cout << "f_num1 = " << f_num1 << endl;cout << "f_num2 = " << f_num2 << endl;cout << "f_num10 = " << f_num10 << endl;cout << "f_num20 = " << f_num20 << endl;return 0;
}

以上程序运行结果如下:

f_num1 = 21.750000
f_num2 = 13.450000
f_num10 = 21749999616.000000
f_num20 = 13449999360.000000

由此我们不难推断,21.75在实际存储时,并不是存储的21.75,而是21.749999616,同样的,12.45存储的是12.449999360,这样计算出来之后自然就会造成结果的不正确。

再看一个例子

我们再来看一个精度丢失造成运算结果不正确的例子。

#include<iostream>
using namespace std;int main(void)
{float num1 = 2.3410E23;float num2 = num1 + 1.0f;cout << "num2 - num1 = " << num2 - num1 << endl;return 0;
}

如果精度不丢失,运算结果应该为1才对,可是因为精度丢失,导致最后的加1实际和没加效果一样,计算出来的结果是0。

num2 - num1 = 0

怎么解决

那么,既然float有这么多稀奇古怪的问题,应该怎么去解决和避免呢?

首先,当然推荐大家在编程时尽量使用高精度的浮点类型

比如double就比float精度要高,很多时候,使用double能够避免很多问题,比如本文一开始提到的问题,如果使用double就能完美解决:

#include <stdio.h>int main(void)
{double f_num1 = 21.75;double f_num2 = 13.45;printf("f_num1 = %lf\n", f_num1);printf("f_num2 = %lf\n", f_num2);printf("f_num1 + f_num2 = %lf\n", f_num1 + f_num2);return 0;
}

大家可以自己运行一下看看结果。
double类型可以解决大部分精度丢失问题,基本上满足日常使用了,但是仍然不能避免精度丢失(double也有精度限制),这时候就需要想另外的方法来解决了。

万能的cout

前面提到过,cout其实是可以解决这种精度丢失问题的,所以如果不是对效率要求过高或者要求格式化输出(其实cout也可以实现格式化输出,此处不详细展开)必须使用printf,在编写C++程序时,建议使用cout代替printf

写在最后

本文只是简单的介绍了一下浮点型数值的精度问题,如果要深入细究,肯定不止这么多内容,比如浮点型数值在内存中是如何存储的?在字节里是如何分布 的?这才是真正核心的原理部分。在这里只浅尝辄止地讲述了一下,但相信阅读者已经对精度问题有了一个初步的认识。

这篇关于魔性的float浮点数精度问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977264

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复