魔性的float浮点数精度问题

2024-05-10 18:48

本文主要是介绍魔性的float浮点数精度问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从一个问题引入

如果你以前接触过C语言,那么对下面的这段代码一定很熟悉:

#include <stdio.h>int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;printf("f_num1 = %f\n", f_num1);printf("f_num2 = %f\n", f_num2);printf("f_num1 + f_num2 = %f\n", f_num1 + f_num2);return 0;
}

相信很多人不用运行,能够直接报出答案, f_num1 = 21.75, f_num2 = 13.45, f_num1 + f_num2 = 35.2,无论是从常识还是理论角度都不难理解。
下面我们运行一下程序,验证我们的猜测正不正确:

f_num1 = 21.750000
f_num2 = 13.450000
f_num1 + f_num2 = 35.200001

f_num1f_num2的结果和我们预想的一样,之所以后面多了四个0,是因为%f默认保留6位有效数字。但是f_num1 + f_num2的结果是什么鬼,这个35.200001是从哪里来的?
是不是一下子颠覆了我们的认知?
惊不惊喜,意不意外,刺不刺激?是不是发现自从学了C语言,连简单的算术都不会算了?
别急,还有更令你崩溃的。

如果是C++呢

下面我们看看以上程序的C++版本:

#include<iostream>
using namespace std;int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;cout << "f_num1 = " << f_num1 << endl;cout << "f_num2 = " << f_num2 << endl;cout << "f_num1 + f_num2 = " << f_num1 + f_num2 << endl;return 0;
}

直接来看输出结果吧:

f_num1 = 21.75
f_num2 = 13.45
f_num1 + f_num2 = 35.2

很神奇是不是?因为这个结果看起来正常多了。
看到这里,相信我们的心里都有老大一个疑问:为什么C程序和C++程序对同样的数字处理,输出的结果却不一样的?cout到底做了些什么?

cout的神奇之处

为了验证cout对浮点数的处理,我们不妨看一下下面的程序:

#include <iostream>
using namespace std;int main(void)
{float num1 = 5;float num2 = 5.00;float num3 = 5.14;float num4 = 5.140000;float num5 = 5.123456;float num6 = 5.987654321;cout << "num1 = " << num1 << endl;cout << "num2 = " << num2 << endl;cout << "num3 = " << num3 << endl;cout << "num4 = " << num4 << endl;cout << "num5 = " << num5 << endl;cout << "num6 = " << num6 << endl;return 0;
}

看结果来分析比较直观,运行以上程序,结果如下:

num1 = 5
num2 = 5
num3 = 5.14
num4 = 5.14
num5 = 5.12346
num6 = 5.98765

num1num2num3num4这两组结果可以知道,cout对于float类型数值小数点后面的0是直接省去了的(这点和C语言格式化输出的%g有点像)。
num5num6两组结果不难分析出,cout对于浮点型数值,最多保留6位有效数字。
以上是cout处理浮点数时的特点,应该记住。
事实上,我们使用iostream库里的cout.setf不难使cout恢复精度。我们对上面的代码修改如下:

#include<iostream>
using namespace std;int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;cout.setf(ios_base::fixed, ios_base::floatfield);       cout << "f_num1 = " << f_num1 << endl;cout << "f_num2 = " << f_num2 << endl;cout << "f_num1 + f_num2 = " << f_num1 + f_num2 << endl;return 0;
}

输出的结果就与C语言版本一模一样了:

f_num1 = 21.750000
f_num2 = 13.450000
f_num1 + f_num2 = 35.200001

答案呼之欲出

文章写到这里,相信你已经看出来问题的所在了。
不错,之所以结果不一样,正是由于精度引起的!
让我们回顾一下官方教材里关于float精度的描述:

浮点型和表示单精度、双精度和扩展精度值。C++标准指定了一个浮点数有效位数的最小值,然而大多数编译器都实现了更高的精度。 通常,float以一个字(32比特)来表示,double以2个字(64比特)来表示,long double 以3或4个字(96或128比特)来表示。一般来说,类型floatdouble分别有7和16个有效位;类型long double则常常被用于有特殊浮点需求的硬件,它的具体实现不同,精度也各不相同。(《C++ Primer第五版》

由以上描述,我们不难知道,对于float来说,最多只有7个有效位,这也就意味着,当实际存储的精度大于float的精度范围时,就会出现精度丢失现象。
为了进一步佐证上述问题,我们不妨将float的数值放大10亿倍,看看里面存储的值到底是多少:

#include<iostream>
using namespace std;int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;cout.setf(ios_base::fixed, ios_base::floatfield);int billion = 1E9;float f_num10 = f_num1 * billion;float f_num20 = f_num2 * billion;cout << "f_num1 = " << f_num1 << endl;cout << "f_num2 = " << f_num2 << endl;cout << "f_num10 = " << f_num10 << endl;cout << "f_num20 = " << f_num20 << endl;return 0;
}

以上程序运行结果如下:

f_num1 = 21.750000
f_num2 = 13.450000
f_num10 = 21749999616.000000
f_num20 = 13449999360.000000

由此我们不难推断,21.75在实际存储时,并不是存储的21.75,而是21.749999616,同样的,12.45存储的是12.449999360,这样计算出来之后自然就会造成结果的不正确。

再看一个例子

我们再来看一个精度丢失造成运算结果不正确的例子。

#include<iostream>
using namespace std;int main(void)
{float num1 = 2.3410E23;float num2 = num1 + 1.0f;cout << "num2 - num1 = " << num2 - num1 << endl;return 0;
}

如果精度不丢失,运算结果应该为1才对,可是因为精度丢失,导致最后的加1实际和没加效果一样,计算出来的结果是0。

num2 - num1 = 0

怎么解决

那么,既然float有这么多稀奇古怪的问题,应该怎么去解决和避免呢?

首先,当然推荐大家在编程时尽量使用高精度的浮点类型

比如double就比float精度要高,很多时候,使用double能够避免很多问题,比如本文一开始提到的问题,如果使用double就能完美解决:

#include <stdio.h>int main(void)
{double f_num1 = 21.75;double f_num2 = 13.45;printf("f_num1 = %lf\n", f_num1);printf("f_num2 = %lf\n", f_num2);printf("f_num1 + f_num2 = %lf\n", f_num1 + f_num2);return 0;
}

大家可以自己运行一下看看结果。
double类型可以解决大部分精度丢失问题,基本上满足日常使用了,但是仍然不能避免精度丢失(double也有精度限制),这时候就需要想另外的方法来解决了。

万能的cout

前面提到过,cout其实是可以解决这种精度丢失问题的,所以如果不是对效率要求过高或者要求格式化输出(其实cout也可以实现格式化输出,此处不详细展开)必须使用printf,在编写C++程序时,建议使用cout代替printf

写在最后

本文只是简单的介绍了一下浮点型数值的精度问题,如果要深入细究,肯定不止这么多内容,比如浮点型数值在内存中是如何存储的?在字节里是如何分布 的?这才是真正核心的原理部分。在这里只浅尝辄止地讲述了一下,但相信阅读者已经对精度问题有了一个初步的认识。

这篇关于魔性的float浮点数精度问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977264

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.