百度之星资格赛——Disk Schedule(双调旅行商问题)

2024-05-10 12:58

本文主要是介绍百度之星资格赛——Disk Schedule(双调旅行商问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Disk Schedule

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2368    Accepted Submission(s): 333


Problem Description
 
有很多从磁盘读取数据的需求,包括顺序读取、随机读取。为了提高效率,需要人为安排磁盘读取。然而,在现实中,这种做法很复杂。我们考虑一个相对简单的场景。磁盘有许多轨道,每个轨道有许多扇区,用于存储数据。当我们想在特定扇区来读取数据时,磁头需要跳转到特定的轨道、具体扇区进行读取操作。为了简单,我们假设磁头可以在某个轨道顺时针或逆时针匀速旋转,旋转一周的时间是360个单位时间。磁头也可以随意移动到某个轨道进行读取,每跳转到一个相邻轨道的时间为400个单位时间,跳转前后磁头所在扇区位置不变。一次读取数据的时间为10个单位时间,读取前后磁头所在的扇区位置不变。磁头同时只能做一件事:跳转轨道,旋转或读取。现在,需要在磁盘读取一组数据,假设每个轨道至多有一个读取请求,这个读取的扇区是轨道上分布在 0到359内的一个整数点扇区,即轨道的某个360等分点。磁头的起始点在0轨道0扇区,此时没有数据读取。在完成所有读取后,磁头需要回到0轨道0扇区的始点位置。请问完成给定的读取所需的最小时间。

Input
 
输入的第一行包含一个整数M(0<M<=100),表示测试数据的组数。
对于每组测试数据,第一行包含一个整数N(0<N<=1000),表示要读取的数据的数量。之后每行包含两个整数T和S(0<T<=1000,0<= S<360),表示每个数据的磁道和扇区,磁道是按升序排列,并且没有重复。

Output
 
对于每组测试数据,输出一个整数,表示完成全部读取所需的时间。

Sample Input
 
3
1 10 
3
1 20 
3 30
5 10
1 10
2 11


Sample Output
 
830 4090 1642
题解:参照欧几里德旅行商问题只需把本题中的两个点的距离用(距离=两点的轨道差*400+两点的扇区差)代替即可; 
需要注意的是扇区差是轨道小弧的长度:即(360+a[j].y-a[i].y)%360与abs(a[i].y-a[j].y)的较小者,如扇区350与扇区10的距离是20而不是340;
还有一点就是要把起点(0,0)加上;
下面是转自大神们的欧几里德旅行商问题的思路;链接http://blog.csdn.net/weyuli/article/details/19752217
其实所谓的欧几里德旅行商问题就是 从1到n 然后在从n到1的最短路 ,去的时候经过的点的顺序必须从小到大, 来的时候经过的点的顺序必须从大到小, 并且每个点只能经过一次(1和n不算), 输出最短路的长度。
 
思路【转】:
欧几里得旅行商问题是对平面上给定的n个点确定一条连接各点的最短闭合旅程的问题。如图(a)给出了一个7个点问题的解。这个问题的一般形式是NP完全的,故其解需要多于多项式的时间。

J.L. Bentley 建议通过只考虑双调旅程(bitonic tour)来简化问题,这种旅程即为从最左点开始,严格地从左到右直至最右点,然后严格地从右到左直至出发点。下图(b)显示了同样的7个点的最短双调路线。在这种情况下,多项式的算法是可能的。事实上,存在确定的最优双调路线的O(n*n)时间的算法。

      图a  图a                                          图b        图b       

注:在一个单位栅格上显示的平面上的七个点。 a)最短闭合路线,长度大约是24.89。这个路线不是双调的。b)相同点的集合上的最短双调闭合路线。长度大约是25.58。

这是一个算导上的思考题15-1。

首先将给出的点排序,关键字x,重新编号,从左至右1,2,3,…,n。

定义d[i][j],表示结点i到结点j之间的距离。

定义dp[i][j],表示从i连到1,再从1连到j,(注意,i>j,且并没有相连。)


对于任意一个点i来说,有两种连接方法,一种是如图(a)所示,i与i-1相连,另一种呢是如图(b),i与i-1不相连。

根据双调旅程,我们知道结点n一定与n相连,那么,如果我们求的dp[n][n-1],只需将其加上d[n-1][n]就是最短双调闭合路线。

根据上图,很容易写出方程式:

dp[i][j]=dp[i-1][j]+d[i][i-1];

dp[i][i-1]=min(dp[i][i-1],dp[i-1][j]+d[j][i]);

下面是代码实现:


#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 1010;
int dp[maxn][maxn];
int d[maxn][maxn];
struct point
{int x, y;
}a[maxn];int dis(int i, int j)                   //计算两点之间的距离
{int p,q;if(a[i].y>a[j].y)q=(360+a[j].y-a[i].y)%360;elseq=(360+a[i].y-a[j].y)%360;p=abs(a[i].y-a[j].y)>q?q:abs(a[i].y-a[j].y);                     //求出小弧的长度return (abs(a[i].x-a[j].x)*400+p);                  //距离=两点的轨道差*400+两点的扇区差
}
int main()
{int t,n;scanf("%d",&t);while(t-- ){scanf("%d", &n);a[1].x=0;a[1].y=0;                                      //把起点(0,0)加上for(int i = 2; i <= n+1; i++)scanf("%d %d", &a[i].x, &a[i].y);for(int i = 1; i <= n+1; i++){for(int j = 1; j <= n+1; j++){d[i][j] = dis(i, j);               //d[i][j]为i点到j点的距离}}dp[1][2] = d[1][2];                 for(int i = 3; i <= n+1; i++){for(int j = 1; j < i-1; j++){dp[j][i] = dp[j][i-1] + d[i-1][i];                /*      dp[j][i]为j点到1点,再从1点到i点的距离,这一步是为下一循环求dp[i][i+1]做准备,其实就是图a      */}dp[i-1][i] = 999999999;for(int j = 1; j < i-1; j++){int sum = dp[j][i-1] + d[j][i];if(dp[i-1][i] > sum)dp[i-1][i] = sum;                         /*     dp[i-1][i]为i-1点到1点,再从1点到i点的最短距离,这个距离只要加上边d[i-1][i]就是从1点到i点的最短闭合旅程,其实就是图b      */      }}dp[n+1][n+1] = dp[n][n+1] + d[n][n+1];printf("%d\n", dp[n+1][n+1]+10*n);        /*   dp[n+1][n+1]就是最终的最短闭合旅程,n+1点到1点,再从1点到n+1点的最短距离 ,10*n为读取点中数据的时间 */}return 0;
}


这篇关于百度之星资格赛——Disk Schedule(双调旅行商问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976509

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复