文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及全生命周期成本的公交光伏充电站储能优化配置方法》

本文主要是介绍文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及全生命周期成本的公交光伏充电站储能优化配置方法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇论文的核心内容是关于公交光伏充电站储能优化配置方法的研究。以下是关键点的总结:

  1. 研究背景:在“双碳”目标下,城市公交车电动化进程加快,导致公交充电站面临较大的并网点负载压力和较高的运营成本。

  2. 研究目的:提出一种公交光伏充电站储能优化配置方法,以减轻配电网的并网压力,并提升公交充电站的运营经济性。

  3. 研究方法

    • 分析公交充电负荷特性,构建公交光伏充电站典型运行场景。
    • 构建考虑全生命周期成本的双层优化模型,上层规划储能容量和功率,下层优化日运行状态。
    • 采用北京某在营公交充电站作为算例,验证所提配置方法的有效性。
  4. 模型构建

    • 考虑充电站运营商利益、公共交通通勤需求、并网点容量限制。
    • 建立电池储能系统全寿命周期成本模型,包括初始投资成本、运营成本。
  5. 关键影响因素

    • 光伏发电余量上网。
    • 公交车充电策略。
    • 电网电价。
    • 电池购置价格。
  6. 结果分析

    • 配置储能可以显著降低充电站的运营成本和总成本。
    • 储能有序充电和光伏发电余量上网可以减小配置的储能容量,增加售电收益。
  7. 经济效益

    • 通过计算投资回报率和投资回收年限,表明优化配置储能可以提升充电站的运营经济效益。
  8. 结论与建议

    • 合理配置储能有助于推动城市公交电气化,实现“双碳”目标。
    • 建议充电站运营商充分利用环境条件配置光伏发电系统,与电网公司合作,开展储能有序充电。

复现仿真的大致思路可以分为以下几个步骤:

  1. 数据收集与预处理:收集公交充电站的历史充电负荷数据和光伏出力数据,进行季节性和周运行特性分析。

  2. 典型运行场景构建:使用聚类算法(如K-means)对充电负荷和光伏出力数据进行聚类,提取典型运行场景及其概率。

  3. 储能系统建模:建立电池储能系统的运行特性模型,包括电量变化、电池健康状态衰减、SoC连续性等。

  4. 全生命周期成本建模:计算储能系统的初始投资成本、运营成本和再退役成本。

  5. 双层优化模型构建:上层规划储能容量和功率,下层优化日运行状态。

  6. 模型求解:将双层模型转换为单层模型,使用适当的优化算法(如线性规划)求解。

  7. 结果分析:分析储能配置对充电站运营成本、峰谷电价差和电池价格的影响。

以下是使用Python语言表示的程序框架:

import numpy as np
from scipy.optimize import linprog
from sklearn.cluster import KMeans
import pandas as pd# 假设已经有了公交充电站的充电负荷数据和光伏出力数据
charging_load_data = pd.DataFrame(...)  # 这里填入实际的充电负荷数据
pv_output_data = pd.DataFrame(...)      # 这里填入实际的光伏出力数据# 数据预处理(例如,缺失值处理,异常值处理等)
# ...# 典型运行场景构建
def create_scenarios(data, n_clusters):kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(data)scenarios = kmeans.cluster_centers_return scenarioscharging_scenarios = create_scenarios(charging_load_data, n_clusters=3)
pv_scenarios = create_scenarios(pv_output_data, n_clusters=3)# 储能系统建模
def battery_model(battery_capacity, charge_rate, discharge_rate, lifecycle):# 这里应包含电池模型的具体实现pass# 全生命周期成本建模
def lifecycle_cost(initial_investment, operation_cost, maintenance_cost, replacement_cost):# 这里应包含全生命周期成本计算的具体实现pass# 双层优化模型构建
def upper_layer_optimization(scenarios, constraints):# 这里应包含上层规划优化的具体实现passdef lower_layer_optimization(scenarios, constraints):# 这里应包含下层运行优化的具体实现pass# 模型求解
def solve_optimization_model(objective_function, constraints):# 使用线性规划求解器求解return linprog(c=objective_function, A_eq=constraints['A_eq'], b_eq=constraints['b_eq'])# 结果分析
def analyze_results(optimization_results):# 这里应包含结果分析的具体实现pass# 主程序
def main_simulation():# 创建典型运行场景scenarios = create_scenarios(...)  # 填入适当的数据和聚类数# 定义优化模型的约束条件constraints = {'A_eq': ...,  # 线性约束矩阵'b_eq': ...,  # 线性约束向量}# 运行上层规划优化upper_optimization_result = upper_layer_optimization(scenarios, constraints)# 运行下层运行优化lower_optimization_result = lower_layer_optimization(scenarios, constraints)# 综合上下层结果进行求解optimization_results = solve_optimization_model(objective_function, constraints)# 分析优化结果analyze_results(optimization_results)if __name__ == "__main__":main_simulation()

请注意,上述代码仅为概念性框架,实际编程实现时需要根据具体的数据格式、模型参数和算法逻辑进行详细编写。此外,还需要进行单元测试和验证以确保模型的准确性和可靠性。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及全生命周期成本的公交光伏充电站储能优化配置方法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976088

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核