IEEE 754 的标准对浮点数的处理

2024-05-10 08:32
文章标签 浮点数 处理 标准 ieee 754

本文主要是介绍IEEE 754 的标准对浮点数的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文章:

https://blog.csdn.net/weixin_42066185/article/details/88559936

作者在工作中现在就面临这个浮点数通过modbus协议向上位机传输的问题的存在,遇到的是,我们应该怎么样合适的处理这个float 4个bytes 的数据,下面总结一下 个人的调研的结果:

通过网上的调研结果有下面的两种的解决的方案:

方案一:通过将你所得到的带小数的放大一定的倍数,都变成整数进行处理,例如:3.24  --放大100   变成 324 ,然后上位机知道我放大了100 呗就好

方案二:采用IEEE 754 标准  wiki :https://zh.wikipedia.org/wiki/IEEE_754

一、IEEE 754 的标准对浮点数的处理
Step1 首先复习一下对于阶码、尾数

1、对于十进制

 -12.5 * 10**0

12.5:就是尾数 0 就是阶码

2、对于二进制

1.1001*2**3

1.1001:就是尾数  3 就是阶码
Step2 什么是浮点数的存储方式

1、理论

地址            +0                  +1                   +2                             +3
内容 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM

这里
S 代表符号位,1是负,0是正
E 偏移127的幂,二进制阶码=(EEEEEEEE)-127。
M 24位的尾数保存在23位中,只存储23位,最高位固定为1。此方法用最较少的位数实现了
较高的有效位数,提高了精度。

零是一个特定值,幂是0 尾数也是0。

 
Step3 Modbus 中浮点数的标准存储实例

2、实例
浮点数-12.5作为一个十六进制数0xC1480000保存在存储区中,这个值如下:
地址 +0 +1 +2 +3
内容0xC1 0x48 0x00 0x00  

浮点数和十六进制等效保存值之间的转换相当简单。下面的例子说明上面的值-12.5如何转
换。
浮点保存值不是一个直接的格式,要转换为一个浮点数,位必须按上面的浮点数保存格式表
所列的那样分开,例如:


地址          +0                   +1                      +2                    +3
格式 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
二进制 11000001 01001000 00000000 00000000
十六进制 C1 48 00 00

从这个例子可以得到下面的信息:
符号位是1 表示一个负数
幂是二进制10000010或十进制130,130减去127是3,就是实际的幂。
尾数是后面的二进制数10010000000000000000000

在尾数的左边有一个省略的小数点和1,这个1在浮点数的保存中经常省略,加上一个1和小数
点到尾数的开头,得到尾数值如下:
1.10010000000000000000000

接着,根据指数调整尾数.一个负的指数向左移动小数点.一个正的指数向右移动小数点.因为
指数是3,尾数调整如下:
1100.10000000000000000000

结果是一个二进制浮点数,小数点左边的二进制数代表所处位置的2的幂,例如:1100表示
(1*2^3)+(1*2^2)+(0*2^1)+(0*2^0)=12。
小数点的右边也代表所处位置的2的幂,只是幂是负的。例如:.100...表示(1*2^(-1))+
(0*2^(-2))+(0*2^(-2))...=0.5。
这些值的和是12.5。因为设置的符号位表示这数是负的,因此十六进制值0xC1480000表示-
12.5。
 

以下是我做的例子:

#include "ring_buffer.h"typedef union
{uint8_t data[4];float fdata;
} float_iee;int main()
{float_iee data;data.fdata = -12.5;for (uint32_t i = 0; i < 4; i++){printf("%02x ", data.data[i]);}printf("\n ");return 0;
}

测试结果

 

最终结论就是:

在数据传输过程中直接使用memcpy直接复制到目标内存即可,就是满足IEEE 754 的标准对浮点数的处理

这篇关于IEEE 754 的标准对浮点数的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975952

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说