GDAL的使用

2024-05-10 06:20
文章标签 使用 gdal

本文主要是介绍GDAL的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 栅格位置(像素或者是行坐标)和地理参考坐标之间的转换可以通过仿射变换实现,仿射矩阵可以通过GDALDataset::GetGeoTransform()得到,依据下面的公式将像素/行坐标转换到地理参考空间:
    X g e o = G T ( 0 ) + X p i x e l . G T ( 1 ) + Y l i n e . G T ( 2 ) Y g e o = G T ( 3 ) + X p i x e l . G T ( 4 ) + Y l i n e . G T ( 5 ) X_{geo} = GT(0) + Xpixel.GT(1) + Yline.GT(2) \\ Y_{geo} = GT(3) + Xpixel.GT(4) + Yline.GT(5) Xgeo=GT(0)+Xpixel.GT(1)+Yline.GT(2)Ygeo=GT(3)+Xpixel.GT(4)+Yline.GT(5)
    其中像素坐标左上角为 ( 0 , 0 ) (0,0) (0,0) ( G T ( 0 ) , G T ( 3 ) ) (GT(0),GT(3)) (GT(0),GT(3))是栅格左上角坐标, G T ( 1 ) GT(1) GT(1)是像素宽度, G T ( 5 ) GT(5) GT(5)是像素的高度;
  • 可以通过地理控制点(GCP)来描述栅格数据集地理参考,关联了栅格位置和地理参考系统的一个或者多个位置,一个数据集会有一套控制点,控制点通过GDALDataset::GetGCPProjection()得到,每个控制点包含Char pszId(控制点标识符),Char pszInfo(通常是空串),double dfGCPPixel+double dfGCPLine(像素、线的位置是控制点在栅格的位置),double dfGCPX+double dfGCPY+double dfGCPZ(地理参考位置),本条和上一条都描述了栅格位置和地理参考坐标之间的关系;
  • 栅格波段GDALRasterBand
  • 颜色表:像素值被用作颜色表的下标;
try:import gdal
except:from osgeo import gdal	# gdal1.6
from osgeo.gdalconst import *	# 常用的常量# 要读取数据之前需要载入数据驱动
# 注册所有数据驱动
gdal.AllRegister()
# 某一类型的数据驱动,按照数据格式加载
driver = gdal.GetDriverByName('GTiff')
driver.Register()# 查看系统支持的数据格式,其中shortname就是上面GetDriverByName的参数,对于不同的gdal版本GetDriver的结果可能不同
drv_count = gdal.GetDriverCount()
for idx in range(drv_count):driver = gdal.GetDriver(idx)print( "%10s: %s" % (driver.ShortName, driver.LongName))# 读取遥感影像
# 打开GeoTIF文件
dataset = gdal.Open("/gdata/geotiff_file.tif")
# python的dir()函数可以快速查看某对象可用的操作
dataset.GetDescription() 	# 获得栅格的描述信息
dataset.RasterCount 	# 获得栅格数据集的波段数
dataset.RasterXSize 	# 栅格数据的宽度(X方向上的像素个数)
dataset.RasterYSize 	# 栅格数据的高度(Y方向上的像素个数)
dataset.GetGeoTransform() 	# 栅格数据的六参数,这六个参数包括 左上角坐标 , 像元X、Y方向大小 , 旋转 等信息。 要注意, Y 方向的像元大小为负值
GetProjection() 	# 栅格数据的投影
dataset.GetMetadata()		# 获取元数据# 获取数据集的信息
band = dataset.GetRasterBand(1)		# 获取第一个波段,下标从0开始
band.XSize, band.YSize, band.DataType	# 宽高和数据类型
# 数据类型对应
# 未知或未指定类型 gdalconst.GDT_Unknown 0
# 8位无符整型 gdalconst.GDT_Byte 1
# 16位无符整型 gdalconst.GDT_UInt16 2
# 16位整型 gdalconst.GDT_Int16 3
# 32位无符整型 gdalconst.GDT_UInt32 4
# 32位整型值 gdalconst.GDT_Int32 5
# 32位浮点型 gdalconst.GDT_Float32 6
# 64位浮点型 gdalconst.GDT_Float64 7
# 16位复数整型 gdalconst.GDT_CInt16 8
# 32位复数整型 gdalconst.GDT_CInt32 9
# 32位复数浮点型 gdalconst.GDT_CFloat32 10
# 64位复数浮点型 gdalconst.GDT_CFloat64 11
band.GetNoDataValue()		# 无意义填充值
band.GetMaximum()
band.GetMinimum()
band.ComputeRasterMinMax()# 访问栅格数据集的数据
dataset.ReadRaster() 	# 读取图像数据(以二进制的形式)
dataset.ReadAsArray() 	# 读取图像数据(以数组的形式),返回的是numpy的array
# 参数
# xoff,yoff :指定想要读取的部分原点位置在整张图像中距离全图原点的位置(以像元为单位)
# xsize,ysize : 指定要读取部分图像的矩形的长和宽(以像元为单位)
# buf_xsize,buf_ysize :可以在读取出一部分图像后进行缩放。那么就用这两个参数来定义缩放后图像最终的宽和高, GDAL 将帮你缩放到这个大小
# buf_type :可以对读出的数据的类型进行转换(比如原图数据类型是short,你要把它们缩小成byte)
# band_list :适应多波段的情况。可以指定要读取的波段# 查看图片信息
!gdalinfo /gdata/lu75i1.tif	
# 访问索引图像:所读的数据知识真实数据的索引,而不是灰度图像
dataset = gdal.Open('/gdata/lu75i1.tif')
band = dataset.GetRasterBand(1)
band.GetRasterColorInterpretation()		# 返回2,gdalconst.GCI_PaletteIndex,表示索引图
colormap = band.GetRasterColorTable()	# 获取颜色表
colormap.GetPaletteInterpretation()		# 获取颜色表的类型
colormap.GetCount()	# 颜色数量
for i in range(colormap.GetCount() - 10, colormap.GetCount()):print("%i:%s" % (i, colormap.GetColorEntry(i)))	# 获得颜色的四值元祖,例如rgb,cmyk
# 我们通过ReadRaster读出的数据值只是对应到这个表的一个索引而已。 
# 我们需要通过读出这些数据,并在真实数据表中找出真实数据, 重新组织成一个RGB表才能用来绘制。
# 如果不经过对应, 绘制出来的东西可能没有任何意义
# GTiff颜色表存储时是16位的,但是读取之后自动进行了处理变为0-255# 创建影像
driver = gdal.GetDriverByName( 'GTiff' )
dst_filename = '/tmp/x_tmp.tif'
dst_ds = driver.Create( dst_filename, 512, 512, 1, gdal.GDT_Byte )
from osgeo import osr
dst_ds.SetGeoTransform( [ 444720, 30, 0, 3751320, 0, -30 ] )
srs = osr.SpatialReference()
srs.SetUTM( 11, 1 )
srs.SetWellKnownGeogCS( 'NAD27' )
dst_ds.SetProjection( srs.ExportToWkt() )
raster = numpy.zeros( (512, 512) )
dst_ds.GetRasterBand(1).WriteArray( raster )

ref:
https://www.osgeo.cn/pygis/gdal.html

这篇关于GDAL的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975675

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他