flink kafka的enableCommitOnCheckpoints 和 enable.auto.commit 参数

2024-05-10 02:52

本文主要是介绍flink kafka的enableCommitOnCheckpoints 和 enable.auto.commit 参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

每次使用flink消费kafka消息的时候我就被这两个参数enableCommitOnCheckpoints 和 enable.auto.commit困扰,本文就来从源码看看这两个参数的作用

enableCommitOnCheckpoints 和 enable.auto.commit参数

1.FlinkKafkaConsumerBase的open方法,查看offsetCommitMode的赋值

public void open(Configuration configuration) throws Exception {
// determine the offset commit mode
this.offsetCommitMode = OffsetCommitModes.fromConfiguration(
getIsAutoCommitEnabled(),
enableCommitOnCheckpoints,
((StreamingRuntimeContext) getRuntimeContext()).isCheckpointingEnabled());}

2.OffsetCommitModes.fromConfiguration方法

public static OffsetCommitMode fromConfiguration(
boolean enableAutoCommit,
boolean enableCommitOnCheckpoint,
boolean enableCheckpointing) {if (enableCheckpointing) {
// if checkpointing is enabled, the mode depends only on whether committing on checkpoints is enabled
return (enableCommitOnCheckpoint) ? OffsetCommitMode.ON_CHECKPOINTS : OffsetCommitMode.DISABLED;
} else {
// else, the mode depends only on whether auto committing is enabled in the provided Kafka properties
return (enableAutoCommit) ? OffsetCommitMode.KAFKA_PERIODIC : OffsetCommitMode.DISABLED;
}
}

从这个代码可知,enableCommitOnCheckpoint 和 enableAutoCommit是不会同时存在的,也就是flink如果在checkpoint的时候提交偏移,他就肯定不会设置enableAutoCommit自动提交,反之亦然

enableCommitOnCheckpoint 提交偏移的关键代码

1.FlinkKafkaConsumerBase.snapshotState方法

public final void snapshotState(FunctionSnapshotContext context) throws Exception {
if (!running) {
LOG.debug("snapshotState() called on closed source");
} else {
unionOffsetStates.clear();final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;
if (fetcher == null) {
// the fetcher has not yet been initialized, which means we need to return the
// originally restored offsets or the assigned partitions
for (Map.Entry<KafkaTopicPartition, Long> subscribedPartition : subscribedPartitionsToStartOffsets.entrySet()) {
unionOffsetStates.add(Tuple2.of(subscribedPartition.getKey(), subscribedPartition.getValue()));
}
//  这里如果是checkpoint模式会在checkpoint的时候保存offset到状态中
if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
// the map cannot be asynchronously updated, because only one checkpoint call can happen
// on this function at a time: either snapshotState() or notifyCheckpointComplete()
pendingOffsetsToCommit.put(context.getCheckpointId(), restoredState);
}}

2.FlinkKafkaConsumerBase.notifyCheckpointComplete方法

@Override
public final void notifyCheckpointComplete(long checkpointId) throws Exception {
final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;
final int posInMap = pendingOffsetsToCommit.indexOf(checkpointId);fetcher.commitInternalOffsetsToKafka(offsets, offsetCommitCallback);

enable.auto.commit参数

1.KafkaConsumerThread.run线程

if (records == null) {
try {
records = consumer.poll(pollTimeout);
}
catch (WakeupException we) {
continue;
}
}

2.KafkaConsumer的poll方法

private ConsumerRecords<K, V> poll(final Timer timer, final boolean includeMetadataInTimeout) {
acquireAndEnsureOpen();
try {
this.kafkaConsumerMetrics.recordPollStart(timer.currentTimeMs());if (this.subscriptions.hasNoSubscriptionOrUserAssignment()) {
throw new IllegalStateException("Consumer is not subscribed to any topics or assigned any partitions");
}// poll for new data until the timeout expires
do {
client.maybeTriggerWakeup();
//  updateAssignmentMetadataIfNeeded方法是关键
if (includeMetadataInTimeout) {
if (!updateAssignmentMetadataIfNeeded(timer)) {
return ConsumerRecords.empty();
}
} else {
while (!updateAssignmentMetadataIfNeeded(time.timer(Long.MAX_VALUE))) {
log.warn("Still waiting for metadata");
}
}final Map<TopicPartition, List<ConsumerRecord<K, V>>> records = pollForFetches(timer);
if (!records.isEmpty()) {
// before returning the fetched records, we can send off the next round of fetches
// and avoid block waiting for their responses to enable pipelining while the user
// is handling the fetched records.
//
// NOTE: since the consumed position has already been updated, we must not allow
// wakeups or any other errors to be triggered prior to returning the fetched records.
if (fetcher.sendFetches() > 0 || client.hasPendingRequests()) {
client.transmitSends();
}return this.interceptors.onConsume(new ConsumerRecords<>(records));
}
} while (timer.notExpired());return ConsumerRecords.empty();
} finally {
release();
this.kafkaConsumerMetrics.recordPollEnd(timer.currentTimeMs());
}
}

3.KafkaConsumer.updateAssignmentMetadataIfNeeded方法

boolean updateAssignmentMetadataIfNeeded(final Timer timer) {
if (coordinator != null && !coordinator.poll(timer)) {
return false;
}return updateFetchPositions(timer);
}4.ConsumerCoordinator.poll方法public boolean poll(Timer timer) {
maybeUpdateSubscriptionMetadata();invokeCompletedOffsetCommitCallbacks();if (subscriptions.partitionsAutoAssigned()) {
if (protocol == null) {
throw new IllegalStateException("User configured " + ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG +
" to empty while trying to subscribe for group protocol to auto assign partitions");
}
// Always update the heartbeat last poll time so that the heartbeat thread does not leave the
// group proactively due to application inactivity even if (say) the coordinator cannot be found.
pollHeartbeat(timer.currentTimeMs());
if (coordinatorUnknown() && !ensureCoordinatorReady(timer)) {
return false;
}if (rejoinNeededOrPending()) {
// due to a race condition between the initial metadata fetch and the initial rebalance,
// we need to ensure that the metadata is fresh before joining initially. This ensures
// that we have matched the pattern against the cluster's topics at least once before joining.
if (subscriptions.hasPatternSubscription()) {
// For consumer group that uses pattern-based subscription, after a topic is created,
// any consumer that discovers the topic after metadata refresh can trigger rebalance
// across the entire consumer group. Multiple rebalances can be triggered after one topic
// creation if consumers refresh metadata at vastly different times. We can significantly
// reduce the number of rebalances caused by single topic creation by asking consumer to
// refresh metadata before re-joining the group as long as the refresh backoff time has
// passed.
if (this.metadata.timeToAllowUpdate(timer.currentTimeMs()) == 0) {
this.metadata.requestUpdate();
}if (!client.ensureFreshMetadata(timer)) {
return false;
}maybeUpdateSubscriptionMetadata();
}if (!ensureActiveGroup(timer)) {
return false;
}
}
} else {
// For manually assigned partitions, if there are no ready nodes, await metadata.
// If connections to all nodes fail, wakeups triggered while attempting to send fetch
// requests result in polls returning immediately, causing a tight loop of polls. Without
// the wakeup, poll() with no channels would block for the timeout, delaying re-connection.
// awaitMetadataUpdate() initiates new connections with configured backoff and avoids the busy loop.
// When group management is used, metadata wait is already performed for this scenario as
// coordinator is unknown, hence this check is not required.
if (metadata.updateRequested() && !client.hasReadyNodes(timer.currentTimeMs())) {
client.awaitMetadataUpdate(timer);
}
}
//  这里是重点
maybeAutoCommitOffsetsAsync(timer.currentTimeMs());
return true;
}

5.ConsumerCoordinatormaybeAutoCommitOffsetsAsync方法

public void maybeAutoCommitOffsetsAsync(long now) {
if (autoCommitEnabled) {
nextAutoCommitTimer.update(now);
if (nextAutoCommitTimer.isExpired()) {
nextAutoCommitTimer.reset(autoCommitIntervalMs);
doAutoCommitOffsetsAsync();
}
}
}

看到没,这里就是判断autoCommitEnabled的地方,这里如果打开了自动提交功能的话,就会进行offset的提交

特别重要的两点

1.kafkaconsumer当开始进行消费时,即使不提交任何偏移量,也不影响它消费消息,他还是能正常消费kafka主题的消息,这里提交偏移的主要作用在于当kafkaconsumer断线然后需要重连kafka broker进行消费时,此时它一般会从它最后提交的offset位置开始消费(此时还依赖于没有设置startFromLatest,startFromEarliest,startFromTimeStamp的情况下),这才是consumer提交offset偏移的最大意义

2.对于flink来说,由于每次重启的时候,flink的consumer都会从checkpoint中把偏移取出来并设置,所以flink的consumer在消息消费过程中无论通过enableCommitOnCheckpoint 还是enableAutoCommit提交的偏移并没有意义,因为并没有使用到,它的意义只在于flink没有从checkpoint中启动时,此时flink的consumer才会从enableCommitOnCheckpoint 、enableAutoCommit提交的偏移开始消费消息(此时还依赖于没有设置startFromLatest,startFromEarliest,startFromTimeStamp的情况下)

参考文章:https://blog.csdn.net/qq_42009500/article/details/119875158

这篇关于flink kafka的enableCommitOnCheckpoints 和 enable.auto.commit 参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975237

相关文章

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

Java Kafka消费者实现过程

《JavaKafka消费者实现过程》Kafka消费者通过KafkaConsumer类实现,核心机制包括偏移量管理、消费者组协调、批量拉取消息及多线程处理,手动提交offset确保数据可靠性,自动提交... 目录基础KafkaConsumer类分析关键代码与核心算法2.1 订阅与分区分配2.2 拉取消息2.3

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空