YOLOv9改进策略 | 添加注意力篇 | 一文带你改进GAM、CBAM、CA、ECA等通道注意力机制和多头注意力机制

2024-05-10 01:12

本文主要是介绍YOLOv9改进策略 | 添加注意力篇 | 一文带你改进GAM、CBAM、CA、ECA等通道注意力机制和多头注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、本文介绍

这篇文章给大家带来的改进机制是一个汇总篇,包含一些简单的注意力机制,本来一直不想发这些内容的(网上教程太多了,发出来增加文章数量也没什么意义),但是群内的读者很多都问我这些机制所以单独出一期视频来汇总一些比较简单的注意力机制添加的方法和使用教程,本文的内容不会过度的去解释原理,更多的是从从代码的使用上和实用的角度出发去写这篇教程。

欢迎大家订阅我的专栏一起学习YOLO!  

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 


目录

 一、本文介绍

二、GAM

2.1 GAM的介绍

2.2 GAM的核心代码

三、CBAM

3.1 CBAM的介绍

​编辑​​

3.2 CBAM核心代码

四、CA

4.1 CA的介绍

4.2 CA核心代码

五、ECA

5.1 ECA的介绍

 5.2 ECA核心代码

六、注意力机制的添加方法

6.1 修改一

6.2 修改二 

6.3 修改三 

6.4 修改四 

七、yaml文件

7.1 添加位置1 

7.1 添加位置2

八、本文总结


二、GAM

2.1 GAM的介绍

​​官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转

​​


简单介绍:GAM旨在通过设计一种机制,减少信息损失并放大全局维度互动特征,从而解决传统注意力机制在通道和空间两个维度上保留信息不足的问题。GAM采用了顺序的通道-空间注意力机制,并对子模块进行了重新设计。具体来说,通道注意力子模块使用3D排列来跨三个维度保留信息,并通过一个两层的MLP增强跨维度的通道-空间依赖性。在空间注意力子模块中,为了更好地关注空间信息,采用了两个卷积层进行空间信息融合,同时去除了可能导致信息减少的最大池化操作,通过使用分组卷积和通道混洗在ResNet50中避免参数数量显著增加。GAM在不同的神经网络架构上稳定提升性能,特别是对于ResNet18,GAM以更少的参数和更好的效率超过了ABN,其简单原理结构图如下所示。

​​


2.2 GAM的核心代码

import torch
import torch.nn as nn'''
https://arxiv.org/abs/2112.05561
'''class GAM(nn.Module):def __init__(self, in_channels, rate=4):super().__init__()out_channels = in_channelsin_channels = int(in_channels)out_channels = int(out_channels)inchannel_rate = int(in_channels/rate)self.linear1 = nn.Linear(in_channels, inchannel_rate)self.relu = nn.ReLU(inplace=True)self.linear2 = nn.Linear(inchannel_rate, in_channels)self.conv1=nn.Conv2d(in_channels, inchannel_rate,kernel_size=7,padding=3,padding_mode='replicate')self.conv2=nn.Conv2d(inchannel_rate, out_channels,kernel_size=7,padding=3,padding_mode='replicate')self.norm1 = nn.BatchNorm2d(inchannel_rate)self.norm2 = nn.BatchNorm2d(out_channels)self.sigmoid = nn.Sigmoid()def forward(self,x):b, c, h, w = x.shape# B,C,H,W ==> B,H*W,Cx_permute = x.permute(0, 2, 3, 1).view(b, -1, c)# B,H*W,C ==> B,H,W,Cx_att_permute = self.linear2(self.relu(self.linear1(x_permute))).view(b, h, w, c)# B,H,W,C ==> B,C,H,Wx_channel_att = x_att_permute.permute(0, 3, 1, 2)x = x * x_channel_attx_spatial_att = self.relu(self.norm1(self.conv1(x)))x_spatial_att = self.sigmoid(self.norm2(self.conv2(x_spatial_att)))out = x * x_spatial_attreturn outif __name__ == '__main__':img = torch.rand(1,64,32,48)b, c, h, w = img.shapenet = GAM(in_channels=c, out_channels=c)output = net(img)print(output.shape)


三、CBAM

3.1 CBAM的介绍

​​

官方论文地址:官方论文地址点击此处即可跳转

官方代码地址:官方代码地址点击此处即可跳转

​​

简单介绍:CBAM的主要思想是通过关注重要的特征并抑制不必要的特征来增强网络的表示能力。模块首先应用通道注意力,关注"重要的"特征,然后应用空间注意力,关注这些特征的"重要位置"。通过这种方式,CBAM有效地帮助网络聚焦于图像中的关键信息,提高了特征的表示力度,下图为其简单原理结构图。 

​​


3.2 CBAM核心代码

import torch
import torch.nn as nnclass ChannelAttention(nn.Module):"""Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""def __init__(self, channels: int) -> None:"""Initializes the class and sets the basic configurations and instance variables required."""super().__init__()self.pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)self.act = nn.Sigmoid()def forward(self, x: torch.Tensor) -> torch.Tensor:"""Applies forward pass using activation on convolutions of the input, optionally using batch normalization."""return x * self.act(self.fc(self.pool(x)))class SpatialAttention(nn.Module):"""Spatial-attention module."""def __init__(self, kernel_size=7):"""Initialize Spatial-attention module with kernel size argument."""super().__init__()assert kernel_size in (3, 7), "kernel size must be 3 or 7"padding = 3 if kernel_size == 7 else 1self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.act = nn.Sigmoid()def forward(self, x):"""Apply channel and spatial attention on input for feature recalibration."""return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))class CBAM(nn.Module):"""Convolutional Block Attention Module."""def __init__(self, c1, kernel_size=7):"""Initialize CBAM with given input channel (c1) and kernel size."""super().__init__()self.channel_attention = ChannelAttention(c1)self.spatial_attention = SpatialAttention(kernel_size)def forward(self, x):"""Applies the forward pass through C1 module."""return self.spatial_attention(self.channel_attention(x))


四、CA

4.1 CA的介绍

​​

官方论文地址:官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转

​​


简单介绍: 坐标注意力是一种结合了通道注意力和位置信息的注意力机制,旨在提升移动网络的性能。它通过将特征张量沿两个空间方向进行1D全局池化,分别捕获沿垂直和水平方向的特征,保留了精确的位置信息并捕获了长距离依赖性。这两个方向的特征图被单独编码成方向感知和位置敏感的注意力图,然后这些注意力图通过乘法作用于输入特征图,以突出感兴趣的对象表示。坐标注意力的引入,使得模型能够更准确地定位和识别感兴趣的对象,同时由于其轻量级和灵活性,它可以轻松集成到现有的移动网络架构中,几乎不会增加计算开销。

​​


4.2 CA核心代码

import torch
import torch.nn as nn
import math
import torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)class CoordAtt(nn.Module):def __init__(self, inp, reduction=32):super(CoordAtt, self).__init__()oup = inpself.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn,c,h,w = x.size()x_h = self.pool_h(x)x_w = self.pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out

五、ECA

5.1 ECA的介绍

​​

官方论文地址:官方论文地址点击此处即可跳转

官方代码地址:官方代码地址点击此处即可跳转

​​

简单介绍:ECA(Efficient Channel Attention)注意力机制的原理可以总结为:避免通道注意力模块中的降维操作,通过采用局部跨通道交互策略,利用1D卷积实现高效的通道注意力计算。这种方法保持了性能的同时显著减少了模型的复杂性,通过自适应选择卷积核大小,确定了局部跨通道交互的覆盖范围。 ECA模块通过少量参数和低计算成本,实现了在ResNets和MobileNetV2等主干网络上的显著性能提升,且相对于其他注意力模块具有更高的效率和更好的性能。 


 5.2 ECA核心代码

import torch
from torch import nn
from torch.nn.parameter import Parameterclass ECA(nn.Module):"""Constructs a ECA module.Args:channel: Number of channels of the input feature mapk_size: Adaptive selection of kernel size"""def __init__(self, channel, k_size=3):super(ECA, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid()def forward(self, x):# feature descriptor on the global spatial informationy = self.avg_pool(x)# Two different branches of ECA moduley = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)# Multi-scale information fusiony = self.sigmoid(y)return x * y.expand_as(x)


六、注意力机制的添加方法

6.1 修改一

第一还是建立文件,我们找到如下yolov9-main/models文件夹下建立一个目录名字呢就是'modules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


6.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


6.3 修改三 

第三步我门中到如下文件'yolov5-master/models/yolo.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!

​​


6.4 修改四 

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。


七、yaml文件

7.1 添加位置1 

下面的文件是配置好的yaml文件,其中包含了四个注意力机制,其中默认先用的CBAM大家使用那个只需要把其他的注释掉即可

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[[-1, 1, CBAM, []],  # 添加一行我们的改进机制可以替换其它注意力机制在这个位置,这里以CBAM为例# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 11# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)# routing[5, 1, CBLinear, [[256]]], # 24[7, 1, CBLinear, [[256, 512]]], # 25[9, 1, CBLinear, [[256, 512, 512]]], # 26# conv down[0, 1, Conv, [64, 3, 2]],  # 27-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 28-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 30-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 33-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 36-P5/32[[26, -1], 1, CBFuse, [[2]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]


7.1 添加位置2

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)[-1, 1, CBAM, []],  # 17 添加一行我们的改进机制# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)[-1, 1, CBAM, []],  # 21 添加一行我们的改进机制# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 24 (P5/32-large)[-1, 1, CBAM, []],  # 25 添加一行我们的改进机制# routing[5, 1, CBLinear, [[256]]], # 26[7, 1, CBLinear, [[256, 512]]], # 27[9, 1, CBLinear, [[256, 512, 512]]], # 28# conv down[0, 1, Conv, [64, 3, 2]],  # 29-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 30-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 31# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 32-P3/8[[26, 27, 28, -1], 1, CBFuse, [[0, 0, 0]]], # 33# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 34[-1, 1, CBAM, []],  # 35 添加一行我们的改进机制# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 36-P4/16[[27, 28, -1], 1, CBFuse, [[1, 1]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38[-1, 1, CBAM, []],  # 39 添加一行我们的改进机制# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 40-P5/32[[28, -1], 1, CBFuse, [[2]]], # 41# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 42[-1, 1, CBAM, []],  # 43 添加一行我们的改进机制# detect[[35, 39, 43, 17, 21, 25], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

使用方法同上!


想要学习添加更多添加位置更多机制欢迎大家订阅专栏~ 


八、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv9改进有效涨点专栏,本专栏目前为新开的平均质量分96分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

这篇关于YOLOv9改进策略 | 添加注意力篇 | 一文带你改进GAM、CBAM、CA、ECA等通道注意力机制和多头注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975014

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注