随机梯度下降SGD的理解和现象分析

2024-05-09 20:04

本文主要是介绍随机梯度下降SGD的理解和现象分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提出问题:令人疑惑的损失值

在某次瞎炼丹的过程中,出现了如下令人疑惑的损失值变化图像:

嗯,看起来还挺工整,来看看前10轮打印的具体损失值变化:

| epoch 1 |  iter 5 / 10 | time 1[s] | loss 2.3137 | lr 0.0010
| epoch 1 |  iter 10 / 10 | time 1[s] | loss 2.2976 | lr 0.0010
| epoch 2 |  iter 5 / 10 | time 1[s] | loss 2.3135 | lr 0.0010
| epoch 2 |  iter 10 / 10 | time 1[s] | loss 2.2973 | lr 0.0010
| epoch 3 |  iter 5 / 10 | time 1[s] | loss 2.3132 | lr 0.0010
| epoch 3 |  iter 10 / 10 | time 1[s] | loss 2.2970 | lr 0.0010
| epoch 4 |  iter 5 / 10 | time 1[s] | loss 2.3129 | lr 0.0010
| epoch 4 |  iter 10 / 10 | time 1[s] | loss 2.2968 | lr 0.0010
| epoch 5 |  iter 5 / 10 | time 1[s] | loss 2.3127 | lr 0.0010
| epoch 5 |  iter 10 / 10 | time 1[s] | loss 2.2965 | lr 0.0010
| epoch 6 |  iter 5 / 10 | time 1[s] | loss 2.3124 | lr 0.0010
| epoch 6 |  iter 10 / 10 | time 1[s] | loss 2.2962 | lr 0.0010
| epoch 7 |  iter 5 / 10 | time 1[s] | loss 2.3122 | lr 0.0010
| epoch 7 |  iter 10 / 10 | time 1[s] | loss 2.2960 | lr 0.0010
| epoch 8 |  iter 5 / 10 | time 1[s] | loss 2.3119 | lr 0.0010
| epoch 8 |  iter 10 / 10 | time 1[s] | loss 2.2957 | lr 0.0010
| epoch 9 |  iter 5 / 10 | time 1[s] | loss 2.3116 | lr 0.0010
| epoch 9 |  iter 10 / 10 | time 1[s] | loss 2.2954 | lr 0.0010
| epoch 10 |  iter 5 / 10 | time 1[s] | loss 2.3114 | lr 0.0010
| epoch 10 |  iter 10 / 10 | time 1[s] | loss 2.2952 | lr 0.0010

可以明显看到两列出现递减的子序列:奇数序列和偶数序列。奇数序列的损失值为2.3137, 2.3135, 2.3132, 2.3129,...;奇数序列的损失值为2.2976, 2.2973, 2.2970, 2.2968,...。事出反常必有妖,那么究竟是什么样的东西导致如此的怪象?

在尝试找具体的原因之前,我们先把涉及的具体参数描述清楚。

模型就是一个很简单的序列模型,其网络结构如下:

layers = [MatMul(W1), Sigmoid(), MatMul(W2), Sigmoid(), MSE()]

网络结构就是两层重复结构,单层为一个矩阵乘法层MatMul加上一个激活函数Sigmoid,两层计算完后用均方误差MSE计算损失值,其中参数W1,W2的赋值如下:

rn = np.random.randn
W1 = (rn(10, 1000)).astype(np.float32)
W2 = (rn(1000, 10)).astype(np.float32)

数据和标签的赋值如下:

x = (rn(1000, 10)).astype(np.float32)
t = x**2

数据就是按照正态分布随机化初始1000个10维的向量,而标签就是原来的向量按元素乘方,而炼丹的目的就是观察模型如何学习二次函数的运算法则的。
相关训练的参数如下:

epochs = 100
batch_size = 100
eval_interval = 5
lr = 0.001

训练一共进行100轮,每一轮的每一批数据有100个,对于1000个数据,那么单个轮次可以分10个批次。每个批次都会计算当前批次100个数据的平均损失值,5个批次评估一次平均损失值,然后打印出来。也就是单个轮次可以看到2次打印出来的评估数据。

显然,第1次评估的平均损失值是用前一半的数据计算出来的,而第2次的则是后一半的数据进行运算。那么可以简单猜测:造成如此令人困惑的损失值变化图像,很可能原因就在数据分批上。

本质思考:推导数学公式解释

我们先把模型抽象为数学上的函数 F F F,其具体形式如下:
L o s s = F ( x , t , w ) Loss = F(x,t,w) Loss=F(x,t,w)
其中, x x x为数据, t t t为标签, w w w为权重, L o s s Loss Loss为损失值。
考虑到数据分批,对数据分成 m m m批的情况,实际上存在 m m m个子函数,如下:
L 1 = F 1 ( x 1 , t 1 , w ) L 2 = F 2 ( x 2 , t 2 , w ) L 3 = F 3 ( x 3 , t 3 , w ) . . . L m = F m ( x m , t m , w ) \begin{matrix} L_{1} = F_{1} (x_{1},t_{1},w)\\L_{2} = F_{2} (x_{2},t_{2},w) \\L_{3} = F_{3} (x_{3},t_{3},w) \\... \\L_{m} = F_{m} (x_{m},t_{m},w) \end{matrix} L1=F1(x1,t1,w)L2=F2(x2,t2,w)L3=F3(x3,t3,w)...Lm=Fm(xm,tm,w)
如果将 w ( i , j ) w_{(i,j)} w(i,j)表示为第 i 轮 i轮 i j j j批的权重值,那么很显然对第 i i i轮的训练批次来说,存在如下关系:
w i , 0 = w i − 1 , m w i , 1 = w i , 0 + k ∂ F 1 ∂ w ∣ w = w i , 0 w i , 2 = w i , 1 + k ∂ F 2 ∂ w ∣ w = w i , 1 w i , 3 = w i , 2 + k ∂ F 3 ∂ w ∣ w = w i , 2 . . . w i , m = w i , m − 1 + k ∂ F m ∂ w ∣ w = w i , m − 1 \begin{matrix} w_{i,0}=w_{i-1,m}\\w_{i,1} = w_{i,0}+k\frac{\partial F_{1}}{\partial w}|_{w=w_{i,0}} \\w_{i,2} = w_{i,1}+k\frac{\partial F_{2}}{\partial w}|_{w=w_{i,1}} \\w_{i,3} = w_{i,2}+k\frac{\partial F_{3}}{\partial w}|_{w=w_{i,2}} \\... \\w_{i,m} = w_{i,m-1}+k\frac{\partial F_{m}}{\partial w}|_{w=w_{i,m-1}} \end{matrix} wi,0=wi1,mwi,1=wi,0+kwF1w=wi,0wi,2=wi,1+kwF2w=wi,1wi,3=wi,2+kwF3w=wi,2...wi,m=wi,m1+kwFmw=wi,m1
其中 k k k为学习率的相反数,且一般情况下取值都较小(如取 k = − 0.001 k=-0.001 k=0.001)。考虑到 k k k取值较小,所以有如下近似公式:
w i , 0 = w i − 1 , m w i , 1 = w i , 0 + k ∂ F 1 ∂ w ∣ w = w i , 0 w i , 2 ≈ w i , 1 + k ∂ F 2 ∂ w ∣ w = w i , 0 w i , 3 ≈ w i , 2 + k ∂ F 3 ∂ w ∣ w = w i , 0 . . . w i , m ≈ w i , m − 1 + k ∂ F m ∂ w ∣ w = w i , 0 \begin{matrix} w_{i,0}=w_{i-1,m}\\w_{i,1} = w_{i,0}+k\frac{\partial F_{1}}{\partial w}|_{w=w_{i,0}} \\w_{i,2} \approx w_{i,1}+k\frac{\partial F_{2}}{\partial w}|_{w=w_{i,0}} \\w_{i,3} \approx w_{i,2}+k\frac{\partial F_{3}}{\partial w}|_{w=w_{i,0}} \\... \\w_{i,m} \approx w_{i,m-1}+k\frac{\partial F_{m}}{\partial w}|_{w=w_{i,0}} \end{matrix} wi,0=wi1,mwi,1=wi,0+kwF1w=wi,0wi,2wi,1+kwF2w=wi,0wi,3wi,2+kwF3w=wi,0...wi,mwi,m1+kwFmw=wi,0
从而进一步得到如下具体的近似公式:
w i , j ≈ w i − 1 , j + ∑ t = 1 m k ∂ F t ∂ w ∣ w = w i − 1 , j w_{i,j} \approx w_{i-1,j}+\sum_{t=1}^{m} k\frac{\partial F_{t}}{\partial w}|_{w=w_{i-1,j}} wi,jwi1,j+t=1mkwFtw=wi1,j
为了直观得到结论,采用如下表示:
v t = k ∂ F t ∂ w ∣ w = w i − 1 , j v_{t} = k\frac{\partial F_{t}}{\partial w}|_{w=w_{i-1,j}} vt=kwFtw=wi1,j
那么之前的表达式就可以简写为:
w i , j ≈ w i − 1 , j + ∑ t = 1 m v t w_{i,j} \approx w_{i-1,j}+\sum_{t=1}^{m} v_{t} wi,jwi1,j+t=1mvt
对于 w i , j w_{i,j} wi,j来说, v j v_{j} vj才是其让损失值下降最快的方向,其他的向量代表其他批的数据,往往得到的方向与该方向比较随机,最后得到的和可能趋于0或者其他损失值下降不太快的方向。

因此,要想让第 j j j批的数据对应的损失值稳定下降,还得靠一轮一轮的循环才行,靠同一轮的其他批次是不太合理的(只有一部分情况才能如此)

合理外推:实验数据验证想法

如果看懂了前面的数学推导,那么很自然就能想到:对于批次 m m m较大的情况下,损失函数图像会呈现整体趋势下降的条带,如下图:

其中训练参数改动如下:

x = (rn(2000, 10)).astype(np.float32)
t = x**2
epochs = 200

你说啥?数学推导没看懂?那也没关系,其实到最后只是为了说明一个事情:你把训练数据分成很多个批次去炼丹,对于具体的某个批次的损失值下降,主要是依赖该批次的下一轮迭代,而不是同一轮的其他批次。

如果你感觉条带形状的损失值碍眼,感觉损失值起起伏伏的,很多计算资源都浪费了,那么用一招就能“瞒天过海”:把损失值的评估计算改为一整轮的平均损失,比如有 m m m批数据,那么统计损失值时使用这 m m m个批次的损失值总平均值即可,效果绝对立竿见影:

其中训练参数改动如下:

x = (rn(2000, 10)).astype(np.float32)
t = x**2
epochs = 200
batch_size = 100
eval_interval = 20

这参数里面,一共有2000个数据,100个数据为1批,共20批数据,然后20批数据评估一次整体平均损失值,训练200轮。

这篇关于随机梯度下降SGD的理解和现象分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/974360

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按