java并发编程学习笔记之线程池等源码小析

2024-05-09 08:08

本文主要是介绍java并发编程学习笔记之线程池等源码小析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      在java并发编程中,线程池是一个比较重要的点,什么时候需要使用线程池,什么时候不需要使用线程池,看不同的需求,众所周知,新增一个线程是比较耗资源的,因此如果每次新增一个任务就添加一个线程,在分时系统中,这不仅会造成每个线程所获得的执行时间大大降低,同时也会使cpu和内存大大消耗,线程池是一种比较合适的处理办法,一方面缓解资源紧张,一方面又能获得不错的性能,但是,对于批处理作业和耗费资源不是很多的任务,选择线程池不是一个很好地设计办法。

     首先看看两个新的接口,Callable和Future源码如下

     

public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}

    

package java.util.concurrent;
public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException, ExecutionException;
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}

    简而言之,callable接口类似Runnable 接口,其call()方法和Runnable的run()方法很相似,但是Callable有返回值,而Runnable没有返回值。Future保存异步计算的结果。可以启动一个计算,将Future对象交给某个线程,然后忘掉它,也就是当他是一个返回值。

    通常在一般线程中会使用FutureTask类,FutureTask接口继承自RunnableFuture,而Runnable接口继承Runnable和Future。

    首先看下FutureTask的简单用法:

package com.luchi.thread.threadpool;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
public class TestFutureRCallable implements Callable<Integer>{
private int counter=0;
@Override
public Integer call() throws Exception {
// TODO Auto-generated method stub
System.out.println("i am on the running");
return 1;
}
public  static  void main(String[]args) throws InterruptedException, ExecutionException{
TestFutureRCallable testThread=new TestFutureRCallable();
FutureTask<Integer>futureTask=new FutureTask<Integer>(testThread);
Thread thread=new Thread(futureTask);
thread.start();
System.out.println("future returns:"+futureTask.get());
}
}

      上面程序把Callable的继承类当做FutureTask构造函数参数,然后运行Thread,最后FutureTask能够得到返回值。

      FutureTask有几个构造函数,来看源码

 

     

 public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;       // ensure visibility of callable
}
/**
* Creates a {@code FutureTask} that will, upon running, execute the
* given {@code Runnable}, and arrange that {@code get} will return the
* given result on successful completion.
*
* @param runnable the runnable task
* @param result the result to return on successful completion. If
* you don't need a particular result, consider using
* constructions of the form:
* {@code Future<?> f = new FutureTask<Void>(runnable, null)}
* @throws NullPointerException if the runnable is null
*/
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW;       // ensure visibility of callable
}

  一个是FutureTask(Callable callbale),接受Callable对象,另一个是FutureTask(Runnable runnable,V result),接受Runnable对象。但是从源码可以看出,不管是Callable或者是Runnable,FutureTask都将其转化成Callable对象,Executors.callable(runnable, result);这个方法使用了适配器模式,将Runnable对象转换成Callable对象,看一眼源码:

 public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}

   从源码可以看出,适配器将Runnable对象的run方法放在了Callable对象的call接口中

   也就是说,无论是Callable还是Runnable对象,在FutureTask中都是当做Callable对象使用,由于FutureTask继承了Runnable接口,看一眼其实现的run方法

   

  public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}

   其核心就是执行callable对象的call方法,这也和上面的分析对应。

   然后看一眼FutureTask的get方法

   

  public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}

 如果计算没有结束,则阻塞,如果已经完成则返回计算结果

 

 说了这么多,最后来看看线程池。

 首先看下线程池的简单用法:

 

package com.luchi.thread.threadpool;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class TestThreadPool implements Callable<Integer>{
@Override
public Integer call() throws Exception {
// TODO Auto-generated method stub
System.out.println("the thread is running");
return 10;
}
public static void main(String args[]) throws InterruptedException, ExecutionException{
ExecutorService excutor =Executors.newCachedThreadPool();
TestFutureRCallable test=new TestFutureRCallable();
Future<Integer> future=excutor.submit(test);
System.out.println("  "+future.get());
excutor.shutdown();
}
}

 

 

 

 上面的程序中,简单的使用了线程池,常见的获取线程池的方法有两种,一种是 Executors.newCachedThreadPool()一种是Executors.newFixedThreadPool();看一眼两者的源码

 

 

public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}

 

   两者都返回了ThreadPoolExecutor对象,ThreadPoolExecutor构造函数的意义简单解释下,第一个和第二个参数指的是线程池中线程的线程数量最小M和最大的值N,第三个是多长时间空闲线程回收,第四个参数是第三个的时间单位,第五个参数是表示使用的阻塞Queue,线程池开设线程的方法如下:

   假如新任务来了,如果当前线程数少于最小的M,则新增一个线程,如果在M~N之间,则把任务丢进等待队列中,如果等待队列满了之后,则再新增一个线程,直到到最大的值N。

   newFixecThreadPool中使用了M值和N值相同,也就是新任务来了会一直增开线程数到M,然后再丢进LinkedBlockingQueue中,LinkedBlockingQueue是一个大小无限的阻塞队列,当然这个无限是相对于当前的资源情况,newCachedThreadPool的线程数是从0到无限个,而SynchronousQueue容量为0,意味着任务来了就新开一个线程?(这里不是很了解,有待研究)

   再来看一下其submit()方法

 

 public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);
execute(ftask);
return ftask;
}
/**
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException       {@inheritDoc}
*/
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}

   summit接受Callable和Runnable方法,返回执行的Future对象,本文不去探讨实现细节。

 

这篇关于java并发编程学习笔记之线程池等源码小析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972852

相关文章

Spring Security常见问题及解决方案

《SpringSecurity常见问题及解决方案》SpringSecurity是Spring生态的安全框架,提供认证、授权及攻击防护,支持JWT、OAuth2集成,适用于保护Spring应用,需配置... 目录Spring Security 简介Spring Security 核心概念1. ​Securit

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

SpringBoot改造MCP服务器的详细说明(StreamableHTTP 类型)

《SpringBoot改造MCP服务器的详细说明(StreamableHTTP类型)》本文介绍了SpringBoot如何实现MCPStreamableHTTP服务器,并且使用CherryStudio... 目录SpringBoot改造MCP服务器(StreamableHTTP)1 项目说明2 使用说明2.1

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避