Reinforcement Learning强化学习系列之五:值近似方法Value Approximation

本文主要是介绍Reinforcement Learning强化学习系列之五:值近似方法Value Approximation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

前面说到了强化学习中的蒙特卡洛方法(MC)以及时序差分(TD)的方法,这些方法针对的基本是离散的数据,而一些连续的状态则很难表示,对于这种情况,通常在强化学习里有2中方法,一种是针对value function的方法,也就是本文中提到的值近似(value approximation);另一种则是后面要讲到的policy gradient。

值近似的方法

这里写图片描述
值近似的方法根本上是使用一个值函数来近似表示该状态的返回值,对于状态 S S ,在一个序列中间,我们使用一个参数函数v^(S,w)来近似表示观测到的真实值 vπ(S) v π ( S ) ,学习使用普通的梯度下降的方式进行,对于一个观察序列的每一个step均可以作为一个训练的过程。当然这个值函数可以加上动作 a a 表示成为Q函数的近似 vˆ(S,a,w) v ^ ( S , a , w )

示例

这里写图片描述
问题描述:一个汽车从谷底向上开,但是汽车的马力不足以支撑其到终点,因此最好的策略是需要先开到谷底的左边然后再加速,利用一部分惯性到达终点。

  1. 这里面的状态可以描述为: (xt),(xt^) ( 横 向 位 置 x t ) , ( 速 度 x t ^ )
  2. 动作空间为3个, 1,0,1 − 1 , 0 , 1 ,分别表示全力向左,不动和全力向右
  3. 状态序列更新的方式为:
    xt+1=bound[xt+xt+1^] x t + 1 = b o u n d [ x t + x t + 1 ^ ]

    xt+1^=bound[xt^+0.001A0.0025cos(3xt)] x t + 1 ^ = b o u n d [ x t ^ + 0.001 A − 0.0025 c o s ( 3 x t ) ]

这里bound表示其约束范围,横轴坐标 xt x t 的范围是 1.5xt0.5 − 1.5 ≤ x t ≤ 0.5 ,速度的范围是 0.07xt^0.07 − 0.07 ≤ x t ^ ≤ 0.07 ,当 xt x t 行到最坐标的时候,将会被置零。

在本示例中,将使用Q-learning的值近似方法,采用的线性函数来表示Q函数。

实验环境

实验将基于openAI所提供的gym包的mountaincar-v0这一个环境,openAI提供了很多的游戏环境,都可以进行相关的强化学习实验。
openAI目前支持mac OS 和Linux环境,可以直接使用pip install gym的方式安装其最新的版本的gym,但是对于python2.7来说,安装最新的版本0.9.6,可能会出现cannot import name spaces的问题,选择安装0.9.5则没有这个问题

关键代码

class Estimator(object):def __init__(self):self.models=[]for _ in range(env.action_space.n):model = SGDRegressor(learning_rate="constant")model.partial_fit([self.feature_state(env.reset())],[0])self.models.append(model)def predict(self,s,a=None):s=self.feature_state(s)if a:return self.models[a].predict([s])[0]else:return [self.models[m].predict([s])[0] for m in range(env.action_space.n)]def update(self,s,a,target):s=self.feature_state(s)self.models[a].partial_fit([s],[target])def feature_state(self,s):return featurizer.transform(scaler.transform([s]))[0]def make_epsilon_greedy_policy(estimator,nA,epsilon):def epsilon_greedy_policy(observation):best_action = np.argmax(estimator.predict(observation))A =np.ones(nA,dtype=np.float32)*epsilon/nAA[best_action] += 1-epsilonreturn Areturn epsilon_greedy_policydef Q_learning_with_value_approximation(env,estimator,epoch_num,discount_factor=1.0, epsilon=0.1, epsilon_decay=1.0):# stats = plotting.EpisodeStats(#     episode_lengths=np.zeros(epoch_num),#     episode_rewards=np.zeros(epoch_num))for i_epoch_num in range(epoch_num):policy = make_epsilon_greedy_policy\(estimator,env.action_space.n,epsilon*epsilon_decay**i_epoch_num)state = env.reset()for it in itertools.count():action_probs = policy(state)action = np.random.choice(np.arange(len(action_probs)), p=action_probs)next_state,reward,done,_=env.step(action)q_values_next = estimator.predict(next_state)td_target = reward + discount_factor * np.max(q_values_next)estimator.update(state, action, td_target)# stats.episode_rewards[i_epoch_num] += reward# stats.episode_lengths[i_epoch_num] = itprint("\rStep {} @ Episode {}/{}".format(it, i_epoch_num + 1, epoch_num))if done:print itbreakstate = next_state

其中,将两个状态参数使用RBF核函数进行转换为一维长度为400的特征向量,使用的普通的SGDRegressor。

结果

运行100代后的函数cost值为
这里写图片描述

代码链接

代码可以在我的GitHub链接里找到

这篇关于Reinforcement Learning强化学习系列之五:值近似方法Value Approximation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/972816

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤