【智能算法应用】基于麻雀搜索算法的二维最大熵图像阈值分割

本文主要是介绍【智能算法应用】基于麻雀搜索算法的二维最大熵图像阈值分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.算法原理
    • 2.数学模型
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.算法原理

【智能算法】麻雀搜索算法(SSA)原理及实现

2.数学模型

最大熵法是由 Kapur 于 1985 年所提出的, 该方法的阈值选取标准取决于图像中最大化分
割的目标区域和背景区域的总熵
, 而图像中的熵能够反映图像的平均信息量, 表示图像灰度
分布的聚集特征。

二维熵图像分割方法不仅侧重于考虑每个像素的灰度值,还细致地考察了像素邻域内的灰度分布,从而为图像分割提供了更丰富的信息。通过设置灰度阈值 t 和邻域阈值 s,图像被细分为四个区域:两个主要区域(目标和背景)位于阈值对角线的两侧,而垂直于对角线的两个区域主要包含边缘信息和噪声。

在这里插入图片描述
将图像中一个像素点及其周围3×3 范围的区域作为邻域, 来计算该像素点的邻域灰度均值:
P i j = n i j M × N (1) P_{ij}=\frac{n_{ij}}{M\times N}\tag{1} Pij=M×Nnij(1)
其中 Pij表示该像素点灰度值为 i 并且其邻域灰度平均值为 j 时的概率, nij 表示满足当前像素
点灰度值为 i 且其邻域灰度平均值为 j 时的像素点个数, M×N 表示图像的像素大小。
目标区域和背景区域的累积概率:
w 0 ( t , s ) = ∑ i = 0 t − 1 ∑ j = 0 s − 1 p i j w b ( t , s ) = ∑ i = t L − 1 ∑ j = s L − 1 p i j (2) w_0(t,s)=\sum_{i=0}^{t-1}\sum_{j=0}^{s-1}p_{ij}\\w_b(t,s)=\sum_{i=t}^{L-1}\sum_{j=s}^{L-1}p_{ij}\tag{2} w0(t,s)=i=0t1j=0s1pijwb(t,s)=i=tL1j=sL1pij(2)
目标区域和背景区域的熵:
H o ( t , s ) = − ∑ i = 0 t − 1 ∑ j = 0 s − 1 P i j ln ⁡ ( P i j w 0 ( t , s ) ) H b ( t , s ) = − ∑ i = t L − 1 ∑ j = s L − 1 P i j ln ⁡ ( P i j w b ( t , s ) ) (3) H_o(t,s)=-\sum_{i=0}^{t-1}\sum_{j=0}^{s-1}P_{ij}\ln\left(\frac{P_{ij}}{w_0(t,s)}\right)\\H_b(t,s)=-\sum_{i=t}^{L-1}\sum_{j=s}^{L-1}P_{ij}\ln\left(\frac{P_{ij}}{w_b(t,s)}\right)\tag{3} Ho(t,s)=i=0t1j=0s1Pijln(w0(t,s)Pij)Hb(t,s)=i=tL1j=sL1Pijln(wb(t,s)Pij)(3)
二维最大熵 H:
H ( t , s ) = H 0 ( t , s ) + H b ( t , s ) (4) H(t,s)=H_0(t,s)+H_b(t,s)\tag{4} H(t,s)=H0(t,s)+Hb(t,s)(4)
熵值越大代表信息量越大:
f u n { t ∗ , s ∗ } = arg ⁡ max ⁡ ( 0 ≤ t ≤ L − 1 , 0 ≤ s ≤ L − 1 ) { H ( t , s ) } (5) fun\{t^*,s^*\}=\arg\max(0\leq t\leq L-1,0\leq s\leq L-1)\{H(t,s)\}\tag{5} fun{t,s}=argmax(0tL1,0sL1){H(t,s)}(5)
通常智能算法是求解最小化问题,因此适应度函数定义为:
f i t n e s s = − f u n { t ∗ , s ∗ } (6) fitness = -fun\{t^*,s^*\}\tag{6} fitness=fun{t,s}(6)

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] 袁成志.基于改进群体智能优化算法的图像处理应用研究[D].南京邮电大学,2023.

5.代码获取

这篇关于【智能算法应用】基于麻雀搜索算法的二维最大熵图像阈值分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972547

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.