详细讲一下PYG 里面的torch_geometric.nn.conv.transformer_conv函数

2024-05-09 04:44

本文主要是介绍详细讲一下PYG 里面的torch_geometric.nn.conv.transformer_conv函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.首先先讲一下代码

这是官方给的代码:torch_geometric.nn.conv.transformer_conv — pytorch_geometric documentation

import math
import typing
from typing import Optional, Tuple, Unionimport torch
import torch.nn.functional as F
from torch import Tensorfrom torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.dense.linear import Linear
from torch_geometric.typing import (Adj,NoneType,OptTensor,PairTensor,SparseTensor,
)
from torch_geometric.utils import softmaxif typing.TYPE_CHECKING:from typing import overload
else:from torch.jit import _overload_method as overload[docs]class TransformerConv(MessagePassing):r"""The graph transformer operator from the `"Masked Label Prediction:Unified Message Passing Model for Semi-Supervised Classification"<https://arxiv.org/abs/2009.03509>`_ paper... math::\mathbf{x}^{\prime}_i = \mathbf{W}_1 \mathbf{x}_i +\sum_{j \in \mathcal{N}(i)} \alpha_{i,j} \mathbf{W}_2 \mathbf{x}_{j},where the attention coefficients :math:`\alpha_{i,j}` are computed viamulti-head dot product attention:.. math::\alpha_{i,j} = \textrm{softmax} \left(\frac{(\mathbf{W}_3\mathbf{x}_i)^{\top} (\mathbf{W}_4\mathbf{x}_j)}{\sqrt{d}} \right)Args:in_channels (int or tuple): Size of each input sample, or :obj:`-1` toderive the size from the first input(s) to the forward method.A tuple corresponds to the sizes of source and targetdimensionalities.out_channels (int): Size of each output sample.heads (int, optional): Number of multi-head-attentions.(default: :obj:`1`)concat (bool, optional): If set to :obj:`False`, the multi-headattentions are averaged instead of concatenated.(default: :obj:`True`)beta (bool, optional): If set, will combine aggregation andskip information via.. math::\mathbf{x}^{\prime}_i = \beta_i \mathbf{W}_1 \mathbf{x}_i +(1 - \beta_i) \underbrace{\left(\sum_{j \in \mathcal{N}(i)}\alpha_{i,j} \mathbf{W}_2 \vec{x}_j \right)}_{=\mathbf{m}_i}with :math:`\beta_i = \textrm{sigmoid}(\mathbf{w}_5^{\top}[ \mathbf{W}_1 \mathbf{x}_i, \mathbf{m}_i, \mathbf{W}_1\mathbf{x}_i - \mathbf{m}_i ])` (default: :obj:`False`)dropout (float, optional): Dropout probability of the normalizedattention coefficients which exposes each node to a stochasticallysampled neighborhood during training. (default: :obj:`0`)edge_dim (int, optional): Edge feature dimensionality (in casethere are any). Edge features are added to the keys afterlinear transformation, that is, prior to computing theattention dot product. They are also added to final valuesafter the same linear transformation. The model is:.. math::\mathbf{x}^{\prime}_i = \mathbf{W}_1 \mathbf{x}_i +\sum_{j \in \mathcal{N}(i)} \alpha_{i,j} \left(\mathbf{W}_2 \mathbf{x}_{j} + \mathbf{W}_6 \mathbf{e}_{ij}\right),where the attention coefficients :math:`\alpha_{i,j}` are nowcomputed via:.. math::\alpha_{i,j} = \textrm{softmax} \left(\frac{(\mathbf{W}_3\mathbf{x}_i)^{\top}(\mathbf{W}_4\mathbf{x}_j + \mathbf{W}_6 \mathbf{e}_{ij})}{\sqrt{d}} \right)(default :obj:`None`)bias (bool, optional): If set to :obj:`False`, the layer will not learnan additive bias. (default: :obj:`True`)root_weight (bool, optional): If set to :obj:`False`, the layer willnot add the transformed root node features to the output and theoption  :attr:`beta` is set to :obj:`False`. (default: :obj:`True`)**kwargs (optional): Additional arguments of:class:`torch_geometric.nn.conv.MessagePassing`."""_alpha: OptTensordef __init__(self,in_channels: Union[int, Tuple[int, int]],out_channels: int,heads: int = 1,concat: bool = True,beta: bool = False,dropout: float = 0.,edge_dim: Optional[int] = None,bias: bool = True,root_weight: bool = True,**kwargs,):kwargs.setdefault('aggr', 'add')super().__init__(node_dim=0, **kwargs)self.in_channels = in_channelsself.out_channels = out_channelsself.heads = headsself.beta = beta and root_weightself.root_weight = root_weightself.concat = concatself.dropout = dropoutself.edge_dim = edge_dimself._alpha = Noneif isinstance(in_channels, int):in_channels = (in_channels, in_channels)self.lin_key = Linear(in_channels[0], heads * out_channels)self.lin_query = Linear(in_channels[1], heads * out_channels)self.lin_value = Linear(in_channels[0], heads * out_channels)if edge_dim is not None:self.lin_edge = Linear(edge_dim, heads * out_channels, bias=False)else:self.lin_edge = self.register_parameter('lin_edge', None)if concat:self.lin_skip = Linear(in_channels[1], heads * out_channels,bias=bias)if self.beta:self.lin_beta = Linear(3 * heads * out_channels, 1, bias=False)else:self.lin_beta = self.register_parameter('lin_beta', None)else:self.lin_skip = Linear(in_channels[1], out_channels, bias=bias)if self.beta:self.lin_beta = Linear(3 * out_channels, 1, bias=False)else:self.lin_beta = self.register_parameter('lin_beta', None)self.reset_parameters()[docs]    def reset_parameters(self):super().reset_parameters()self.lin_key.reset_parameters()self.lin_query.reset_parameters()self.lin_value.reset_parameters()if self.edge_dim:self.lin_edge.reset_parameters()self.lin_skip.reset_parameters()if self.beta:self.lin_beta.reset_parameters()@overloaddef forward(self,x: Union[Tensor, PairTensor],edge_index: Adj,edge_attr: OptTensor = None,return_attention_weights: NoneType = None,) -> Tensor:pass@overloaddef forward(  # noqa: F811self,x: Union[Tensor, PairTensor],edge_index: Tensor,edge_attr: OptTensor = None,return_attention_weights: bool = None,) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:pass@overloaddef forward(  # noqa: F811self,x: Union[Tensor, PairTensor],edge_index: SparseTensor,edge_attr: OptTensor = None,return_attention_weights: bool = None,) -> Tuple[Tensor, SparseTensor]:pass[docs]    def forward(  # noqa: F811self,x: Union[Tensor, PairTensor],edge_index: Adj,edge_attr: OptTensor = None,return_attention_weights: Optional[bool] = None,) -> Union[Tensor,Tuple[Tensor, Tuple[Tensor, Tensor]],Tuple[Tensor, SparseTensor],]:r"""Runs the forward pass of the module.Args:x (torch.Tensor or (torch.Tensor, torch.Tensor)): The input nodefeatures.edge_index (torch.Tensor or SparseTensor): The edge indices.edge_attr (torch.Tensor, optional): The edge features.(default: :obj:`None`)return_attention_weights (bool, optional): If set to :obj:`True`,will additionally return the tuple:obj:`(edge_index, attention_weights)`, holding the computedattention weights for each edge. (default: :obj:`None`)"""H, C = self.heads, self.out_channelsif isinstance(x, Tensor):x = (x, x)query = self.lin_query(x[1]).view(-1, H, C)key = self.lin_key(x[0]).view(-1, H, C)value = self.lin_value(x[0]).view(-1, H, C)# propagate_type: (query: Tensor, key:Tensor, value: Tensor,#                  edge_attr: OptTensor)out = self.propagate(edge_index, query=query, key=key, value=value,edge_attr=edge_attr)alpha = self._alphaself._alpha = Noneif self.concat:out = out.view(-1, self.heads * self.out_channels)else:out = out.mean(dim=1)if self.root_weight:x_r = self.lin_skip(x[1])if self.lin_beta is not None:beta = self.lin_beta(torch.cat([out, x_r, out - x_r], dim=-1))beta = beta.sigmoid()out = beta * x_r + (1 - beta) * outelse:out = out + x_rif isinstance(return_attention_weights, bool):assert alpha is not Noneif isinstance(edge_index, Tensor):return out, (edge_index, alpha)elif isinstance(edge_index, SparseTensor):return out, edge_index.set_value(alpha, layout='coo')else:return outdef message(self, query_i: Tensor, key_j: Tensor, value_j: Tensor,edge_attr: OptTensor, index: Tensor, ptr: OptTensor,size_i: Optional[int]) -> Tensor:if self.lin_edge is not None:assert edge_attr is not Noneedge_attr = self.lin_edge(edge_attr).view(-1, self.heads,self.out_channels)key_j = key_j + edge_attralpha = (query_i * key_j).sum(dim=-1) / math.sqrt(self.out_channels)alpha = softmax(alpha, index, ptr, size_i)self._alpha = alphaalpha = F.dropout(alpha, p=self.dropout, training=self.training)out = value_jif edge_attr is not None:out = out + edge_attrout = out * alpha.view(-1, self.heads, 1)return outdef __repr__(self) -> str:return (f'{self.__class__.__name__}({self.in_channels}, 'f'{self.out_channels}, heads={self.heads})')

2.详细解释一下

几个重要的参数

in_channels (int or tuple): Size of each input sample, or :obj:`-1` to derive the size from the first input(s) to the forward method. A tuple corresponds to the sizes of source and target dimensionalities.

out_channels (int): Size of each output sample.

heads (int, optional): Number of multi-head-attentions. (default: :obj:`1`)

怎么理解这几个参数?

 

  • in_channels 表示每个输入样本的大小。如果设置为整数,则表示所有输入样本的大小相同;如果设置为 -1,则表示输入样本的大小将从 forward 方法的第一个输入中推导出来;如果设置为元组,则表示输入样本的大小对应于源维度和目标维度的大小。

  • out_channels 表示每个输出样本的大小,即经过卷积操作后产生的特征向量的维度大小。

 

当使用 tg.nn.TransformerConv 时,可以通过以下方式理解 in_channelsout_channels

假设我们有一个图数据集,每个节点都有一个 10 维的特征向量表示。那么在这种情况下:

  • 如果我们想将每个节点的特征向量作为输入,然后使用 tg.nn.TransformerConv 进行卷积操作,那么 in_channels 应该设置为 10,表示每个输入样本的大小为 10。

  • 假设我们想将节点的特征向量转换为一个 16 维的特征向量,那么 out_channels 应该设置为 16,表示每个输出样本的大小为 16,即经过卷积操作后每个节点的特征向量将变为 16 维。

  • tg.nn.TransformerConv 中,heads 参数表示多头注意力的数量。举个例子,如果 heads 参数设置为 4,那么模型将学习 4 组注意力权重,每组权重都用于计算输入的不同子空间的注意力,然后将这些头的输出进行合并以产生最终的输出。

 举个整体的例子

我们有一个输入张量 x,它的形状是 (batch_size, seq_length, input_dim),其中:

  • batch_size 表示批量大小;
  • seq_length 表示序列长度;
  • input_dim 表示输入特征的维度。

现在假设我们使用了 tg.nn.TransformerConv,并设置 heads=2,那么模型将学习两组注意力权重,每组用于计算不同的注意力。输出张量的形状将取决于 out_channels 参数,我们假设 out_channels=64

import torch
import torch_geometric.nn as tg# 假设输入张量的形状是 (batch_size, seq_length, input_dim)
x = torch.randn(32, 10, 128)  # 32 个样本,每个样本有 10 个时间步,每个时间步有 128 个特征# 创建 TransformerConv 模型,设置 heads=2,out_channels=64
conv_layer = tg.nn.TransformerConv(in_channels=128, out_channels=64, heads=2)# 使用模型进行前向传播
output = conv_layer(x)print("输出张量的形状:", output.shape)

 2.1将特征映射到键值对中

在这里,通过线性变换层 Linear,输入特征被转换成了键(key)、查询(query)和数值(value)的表示形式,以便用于多头自注意力机制。

具体来说:

  • self.lin_key 用于将输入特征(in_channels[0])映射到键的表示形式。
  • self.lin_query 用于将输入特征(in_channels[1])映射到查询的表示形式。
  • self.lin_value 用于将输入特征(in_channels[0])映射到数值的表示形式。

 具体地,假设输入特征的维度是 (batch_size, num_nodes, in_channels),其中 batch_size 是批量大小,num_nodes 是节点数,in_channels 是输入特征的通道数。在映射到键的过程中,线性变换层的权重矩阵将是一个维度为 (in_channels, heads * out_channels) 的矩阵,其中 heads 是注意力头的数量,out_channels 是输出特征的通道数。因此,通过矩阵乘法运算,输入特征将被映射到一个新的特征空间,其维度为 (batch_size, num_nodes, heads, out_channels)。在这个新的特征空间中,每个节点的每个头都有一个键表示。

这篇关于详细讲一下PYG 里面的torch_geometric.nn.conv.transformer_conv函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972422

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程