STM32F4xx开发学习_RCC时钟树配置

2024-05-08 16:44

本文主要是介绍STM32F4xx开发学习_RCC时钟树配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RCC(复位与时钟控制)

主要作用有两个,复位与时钟

复位

RCC_reset

1、系统复位

系统复位将所有寄存器设置为其复位值,通过以下事件触发

  • 外部复位,即NRST引脚低电平
  • 窗口看门狗计数结束条件,即窗口看门狗复位
  • 独立看门狗计数结束条件,即独立看门狗复位
  • 软件复位,判断RCC_CSR寄存器上的复位标志位
  • 低功耗管理复位,进入待机模式或停机模式

2、电源复位

电源复位将所有寄存器设置为其复位值除了备份域,通过以下事件触发

  • POR/PDR 复位信号或BOR复位信号
  • 退出待机模式

3、备份域复位

备份域复位将所有的RTC寄存器、RCC-BDCR寄存器、PWR_CSR寄存器BRE位设为其复位值,必须设置PWR_CR寄存器中的BDP位才能产生备份域复位。重置BKPSRAM的唯一方法是通过Flash接口请求将保护级别从1改为0。通过以下事件产生复位

  • 软件复位,通过RCC_BDCR寄存器中的BDRST位触发
  • V D D V_{DD} VDD V B A T V_{BAT} VBAT都断电

时钟

STM32系统时钟(SYSCLK)有三种时钟源

  • 高速内部时钟HSI
  • 高速外部时钟HSE
  • 主PLL时钟

有两种辅助时钟源

  • 低速内部时钟LSI(32KHz)
  • 低速外部时钟LSE(32.768KHz)

RCC时钟树
多个预分频器可用于配置多种时钟频率,AHB总线最大时钟频率为168MHz,APB2总线最大时钟频率为84MHz,APB1总线最大时钟频率为42MHz。定时器外设都在APB总线,定时器时钟频率有两种情况

  • 如果APB总线预分频系数为1,则定时器时钟频率与该总线时钟频率相等
  • 如果APB总线预分频系数不为1,则定时器时钟频率是该总线时钟频率两倍

1、HSE

高速外部时钟,可以由有源晶振无源晶振提供,频率从4-26MHZ不等。当使用有源晶振时,时钟从OSC_IN引脚进入, OSC_OUT引脚悬空,当选用无源晶振时,时钟从OSC_IN和OSC_OUT进入,并且要配谐振电容,尽可能靠经晶振引脚以减少输出失真和稳定启动事件。当HSE故障时,PLL也会关闭,系统时钟由HSI提供。

HSE/LSE时钟

2、HSI

高速内部时钟,由内部16MHz的RC振荡器产生。虽然无需外围电路且启动时间比HSE短,但是时钟频率不如HSE准确,制造工艺不同时钟频率也会不同,同时环境温度对齐也会有影响。系统复位后,HSI默认为系统时钟。

3、锁相环PLL

PLL的主要作用是对时钟进行倍频,然后把时钟输出到各个功能部件。STM32F4xx有两个PLL

  • 主PLL
    主PLL对HSE或HSI的时钟频率进行倍频,具有两种不同的时钟输出
    • 高速系统时钟,PLLCLK = HCLK = SYSCLK = 168MHz
    • USB OTG FS(48MHz)、随机模拟数生成器( ≤ 48 M H z \le 48MHz 48MHz)和SDIO( ≤ 48 M H z \le 48MHz 48MHz
  • 专用PLL
    为I2S接口实现高质量音频性能表现提供准确时钟频率

PLL只能在启动系统之前进行配置,即对M、N、P和Q进行配置。

4、LSE

LSE时钟由32.768KHz的晶振产生,主要用于RTC。

5、LSI

内部低速时钟,由内部32KHzRC振荡器产生。

6、时钟相关计算

HSE或HSI经过PLL时钟输入分频因子M( 2 ≤ P L L M ≤ 63 2 \le PLLM \le 63 2PLLM63)分频,进入压控振荡器(VCO),VCO输入频率范围应在 1 − 2 M H z 1-2MHz 12MHz内,VCO输入频率公式: V C O i n F = H S E 或 H S I P L L M VCO_{inF} = \frac {HSE或HSI}{PLLM} VCOinF=PLLMHSEHSI,这里板载HSE为8MHz,PLLM设置为8,则计算公式为: V C O i n F = 8 M H z 8 = 1 M H z VCO_{inF} = \frac {8MHz}{8} = 1MHz VCOinF=88MHz=1MHz
VCO输入频率 V C O i n F VCO_{inF} VCOinF经过VCO倍频因子N( 50 ≤ P L L N ≤ 432 50 \le PLLN \le 432 50PLLN432)倍频之后,成为VCO时钟输出,输出范围在 100 M H z ≤ V C O o u t F ≤ 432 M H z 100MHz \le VCO_{outF} \le 432MHz 100MHzVCOoutF432MHz内,VCO输出频率公式: V C O o u t F = V C O i n F × P L L N VCO_{outF} = VCO_{inF} \times PLLN VCOoutF=VCOinF×PLLN,这里设置PLLN为336,则计算公式为: V C O o u t F = V C O i n F × P L L N = 336 M H z VCO_{outF} = VCO_{inF} \times PLLN = 336MHz VCOoutF=VCOinF×PLLN=336MHz
VCO输出频率 V C O o u t F VCO_{outF} VCOoutF经过锁相环倍频因子P( P L L P = 2 , 4 , 6 o r 8 PLLP = 2, 4, 6 or 8 PLLP=2,4,6or8)倍频之后,产生不超过168MHz的锁相环输出频率 P L L C L K PLLCLK PLLCLK,这里设置PLLP为2,则计算公式为: P L L C L K f = V C O o u t F P L L P = 336 M H z 2 = 168 M H z PLLCLK_f = \frac {VCO_{outF}}{PLLP} = \frac {336MHz}{2} = 168MHz PLLCLKf=PLLPVCOoutF=2336MHz=168MHz
USB OTG FS/RNG/SDIO时钟分频因子Q( 2 ≤ P L L Q ≤ 15 2 \le PLLQ \le 15 2PLLQ15),USB OTG FS要求48MHz时钟,这里设置PLLQ为7即可。
分频因子R(F446才有,F407没有)。

7、总线时钟频率

  1. 高速APB总线(APB2),通过RCC_CFGR寄存器中的PPRE2[15:13]位进行配置预分频系数,不超过频率84MHz,这里设置2分频,即AHB总线频率168MHz的一半,PCLK2=HCLK/2=84MHz
  2. 低速APB总线(APB1),通过RCC_CFGR寄存器中的PPRE1[12:10]位进行配置预分频系数,不超过频率42MHz,这里设置4分频,即AHB总线频率168MHz的四分之一,PCLK1=HCLK/4=42MHz
  3. AHB总线,RCC_CFGR寄存器中的HPRE[7:4]位进行配置预分频系数,最低频率为25MHz,这里设置为1分频,即HCLK=SYSCLK=168MHz

设置系统时钟

system_stm32f4xx.c文件中给出了系统时钟函数,SystemInit(void)

/*** @brief  Setup the microcontroller system*         Initialize the Embedded Flash Interface, the PLL and update the *         SystemFrequency variable.* @param  None* @retval None*/
void SystemInit(void)
{/* FPU settings ------------------------------------------------------------*/#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2));  /* set CP10 and CP11 Full Access */#endif/* Reset the RCC clock configuration to the default reset state ------------*//* Set HSION bit */RCC->CR |= (uint32_t)0x00000001;//开启HSI/* Reset CFGR register */RCC->CFGR = 0x00000000;//RCC时钟配置寄存器复位/* Reset HSEON, CSSON and PLLON bits */RCC->CR &= (uint32_t)0xFEF6FFFF;//关闭PLL,CSS,关闭HSE/* Reset PLLCFGR register */RCC->PLLCFGR = 0x24003010;//复位PLL/* Reset HSEBYP bit */RCC->CR &= (uint32_t)0xFFFBFFFF;//复位HSE时钟旁路/* Disable all interrupts */RCC->CIR = 0x00000000;//失能所有中断#if defined(DATA_IN_ExtSRAM) || defined(DATA_IN_ExtSDRAM)SystemInit_ExtMemCtl(); 
#endif /* DATA_IN_ExtSRAM || DATA_IN_ExtSDRAM *//* Configure the System clock source, PLL Multiplier and Divider factors, AHB/APBx prescalers and Flash settings ----------------------------------*/SetSysClock();/* Configure the Vector Table location add offset address ------------------*/
#ifdef VECT_TAB_SRAMSCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#elseSCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif
}

SetSysClock(void)函数用于设置系统时钟,启动文件startup_stm32f40xxx.s会将SYSCLK将系统时钟初始化为168MHz,代码如下

/*** @brief  Configures the System clock source, PLL Multiplier and Divider factors, *         AHB/APBx prescalers and Flash settings* @Note   This function should be called only once the RCC clock configuration  *         is reset to the default reset state (done in SystemInit() function).   * @param  None* @retval None*/
static void SetSysClock(void)
{
#if defined(STM32F40_41xxx) || defined(STM32F427_437xx) || defined(STM32F429_439xx) || defined(STM32F401xx) || defined(STM32F412xG) || defined(STM32F446xx)|| defined(STM32F469_479xx)
/******************************************************************************/
/*            PLL (clocked by HSE) used as System clock source                */
/******************************************************************************/__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* Enable HSE */RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++;} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;}if (HSEStatus == (uint32_t)0x01){/* Select regulator voltage output Scale 1 mode */RCC->APB1ENR |= RCC_APB1ENR_PWREN;PWR->CR |= PWR_CR_VOS;/* HCLK = SYSCLK / 1*/RCC->CFGR |= RCC_CFGR_HPRE_DIV1;#if defined(STM32F40_41xxx) || defined(STM32F427_437xx) || defined(STM32F429_439xx) ||  defined(STM32F412xG) || defined(STM32F446xx) || defined(STM32F469_479xx)    /* PCLK2 = HCLK / 2*/RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;/* PCLK1 = HCLK / 4*/RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;
#endif /* STM32F40_41xxx || STM32F427_437x || STM32F429_439xx  || STM32F412xG || STM32F446xx || STM32F469_479xx */
#if defined(STM32F40_41xxx) || defined(STM32F427_437xx) || defined(STM32F429_439xx) || defined(STM32F401xx) || defined(STM32F469_479xx)    /* Configure the main PLL */RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |(RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);
#endif /* STM32F40_41xxx || STM32F401xx || STM32F427_437x || STM32F429_439xx || STM32F469_479xx *//* Enable the main PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till the main PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}
#if defined(STM32F40_41xxx)  || defined(STM32F412xG)   /* Configure Flash prefetch, Instruction cache, Data cache and wait state */FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS;
#endif /* STM32F40_41xxx  || STM32F412xG *//* Select the main PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= RCC_CFGR_SW_PLL;/* Wait till the main PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS ) != RCC_CFGR_SWS_PLL);{}}else{ /* If HSE fails to start-up, the application will have wrong clockconfiguration. User can add here some code to deal with this error */}
#elif defined(STM32F410xx) || defined(STM32F411xE)
#endif /* STM32F40_41xxx || STM32F427_437xx || STM32F429_439xx || STM32F401xx || STM32F469_479xx */  
}

这篇关于STM32F4xx开发学习_RCC时钟树配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970869

相关文章

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

CentOS7更改默认SSH端口与配置指南

《CentOS7更改默认SSH端口与配置指南》SSH是Linux服务器远程管理的核心工具,其默认监听端口为22,由于端口22众所周知,这也使得服务器容易受到自动化扫描和暴力破解攻击,本文将系统性地介绍... 目录引言为什么要更改 SSH 默认端口?步骤详解:如何更改 Centos 7 的 SSH 默认端口1

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

SpringBoot多数据源配置完整指南

《SpringBoot多数据源配置完整指南》在复杂的企业应用中,经常需要连接多个数据库,SpringBoot提供了灵活的多数据源配置方式,以下是详细的实现方案,需要的朋友可以参考下... 目录一、基础多数据源配置1. 添加依赖2. 配置多个数据源3. 配置数据源Bean二、JPA多数据源配置1. 配置主数据

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过