Python批量计算多张遥感影像的NDVI

2024-05-08 04:04

本文主要是介绍Python批量计算多张遥感影像的NDVI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文介绍基于Python中的gdal模块,批量基于大量多波段遥感影像文件,计算其每1景图像各自的NDVI数值,并将多景结果依次保存为栅格文件的方法。

  如下图所示,现在有大量.tif格式的遥感影像文件,其中均含有红光波段近红外波段(此外也可以含有其他光谱波段,有没有都不影响);我们希望,批量计算其每1景遥感影像的NDVI

  在之前的文章中,我们多次介绍过在不同软件或平台中计算NDVI的方法,大家可以参考文章ArcGIS中ArcMap快速自动计算单一波段或多波段栅格遥感影像NDVI的方法(https://blog.csdn.net/zhebushibiaoshifu/article/details/127290179),或者文章Google Earth Engine谷歌地球引擎GEE栅格代数与NDVI波段计算手动求取(https://blog.csdn.net/zhebushibiaoshifu/article/details/119145230)。而在本文中,我们就介绍一下基于Python中的gdal模块,实现NDVI批量计算的方法。

  这里所需的代码如下。

# -*- coding: utf-8 -*-
"""
Created on Thu Apr 18 12:37:22 2024@author: fkxxgis
"""import os
from osgeo import gdaloriginal_folder = r"E:\04_Reconstruction\99_MODIS\new_data\GF_Small\Rec"
output_folder = r"E:\04_Reconstruction\99_MODIS\new_data\GF_Small\NDVI"for filename in os.listdir(original_folder):if filename.endswith('.tif'):dataset = gdal.Open(os.path.join(original_folder, filename), gdal.GA_ReadOnly)width = dataset.RasterXSizeheight = dataset.RasterYSizedriver = gdal.GetDriverByName('GTiff')output_dataset = driver.Create(os.path.join(output_folder, "NDVI_" + filename), width, height, 1, gdal.GDT_Float32)band_red = dataset.GetRasterBand(3)data_red = band_red.ReadAsArray()band_nir = dataset.GetRasterBand(4)data_nir = band_nir.ReadAsArray()data_ndvi = (data_nir - data_red) / (data_nir + data_red)output_band = output_dataset.GetRasterBand(1)output_band.WriteArray(data_ndvi)output_band.FlushCache()output_dataset.SetGeoTransform(dataset.GetGeoTransform())output_dataset.SetProjection(dataset.GetProjection())dataset = Noneoutput_dataset = Noneprint(filename, "finished!")

  代码整体也非常简单。首先,我们定义输入文件与输入结果文件的路径,前者就是待计算NDVI的遥感影像文件路径,后者则是NDVI结果的遥感影像文件路径。

  接下来,遍历original_folder文件夹中的文件。其中,os.listdir()用于获取文件夹中的文件列表,其后的endswith('.tif')用于筛选出以.tif扩展名结尾的文件。

  随后,对于每个以.tif结尾的文件,首先使用gdal.Open()打开文件——其中的os.path.join()用于构建完整的文件路径;接下来获取影像数据集的宽度和高度,并使用gdal.GetDriverByName()获取GTiff驱动程序,用于创建输出影像文件;同时,使用driver.Create()创建一个与原始影像具有相同大小的输出影像文件。

  紧接着,从数据集中获取红光近红外波段的数据。dataset.GetRasterBand()用以获取指定的栅格波段,而band.ReadAsArray()则将波段数据读取为数组。

  其次,即可计算NDVI。使用获取的红光近红外波段数据计算NDVI,并将NDVI数据保存在data_ndvi数组中。

  最后,将NDVI数据写入输出影像文件。output_dataset.GetRasterBand()获取输出影像文件的波段,band.WriteArray()将数据写入波段,band.FlushCache()刷新波段缓存。

  此外,记得通过output_dataset.SetGeoTransform()output_dataset.SetProjection()设置输出影像文件的地理变换和投影信息。

  同时,需要清理和关闭数据集,将数据集和输出数据集设置为None以释放资源。还可以打印文件名finished!,表示当前文件处理完成。

  执行上述代码,我们即可在结果文件夹中看到计算得到的NDVI数据;如下图所示。

  至此,大功告成。

欢迎关注:疯狂学习GIS

这篇关于Python批量计算多张遥感影像的NDVI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969256

相关文章

Python FastAPI实现JWT校验的完整指南

《PythonFastAPI实现JWT校验的完整指南》在现代Web开发中,构建安全的API接口是开发者必须面对的核心挑战之一,本文将深入探讨如何基于FastAPI实现JWT(JSONWebToken... 目录一、JWT认证的核心原理二、项目初始化与环境配置三、安全密码处理机制四、JWT令牌的生成与验证五、

Python使用Turtle实现精确计时工具

《Python使用Turtle实现精确计时工具》这篇文章主要为大家详细介绍了Python如何使用Turtle实现精确计时工具,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录功能特点使用方法程序架构设计代码详解窗口和画笔创建时间和状态显示更新计时器控制逻辑计时器重置功能事件

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

MySQL数据库实现批量表分区完整示例

《MySQL数据库实现批量表分区完整示例》通俗地讲表分区是将一大表,根据条件分割成若干个小表,:本文主要介绍MySQL数据库实现批量表分区的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录一、表分区条件二、常规表和分区表的区别三、表分区的创建四、将既有表转换分区表脚本五、批量转换表为分区

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径