代码随想录Day 40|Leetcode|Python|139.单词拆分 ● 关于多重背包,你该了解这些! ● 背包问题总结篇!

本文主要是介绍代码随想录Day 40|Leetcode|Python|139.单词拆分 ● 关于多重背包,你该了解这些! ● 背包问题总结篇!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

139.单词拆分

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true

注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

解题思路:

确定dp数组含义:dp[i]当字符串长度为i时,是否可以利用字典拼出当前子串s[:i],1的话可以

确定递推公式:如果要判断当前长度i时dp是否为1,可以通过判断 j 时dp的状态和s[j:i]是否在字典里,在的话dp[i] = true(查看最近的dp值为1和该值与当前遍历长度之间的子串是否在字典里

初始化:dp[0] = True, dp[i] = 0

遍历顺序:从前到后,本题是排列问题,相同字符只用出现一次,先遍历背包再遍历物品。

打印dp数组:

class Solution:def wordBreak(self, s: str, wordDict: List[str]) -> bool:dp = [0]*(len(s)+1)dp[0] = 1#先遍历背包for j in range(1,len(s)+1):#遍历物品for i in range(j+1):if dp[i]==1 and (s[i:j] in wordDict):dp[j] = 1return dp[len(s)] == 1

关于多重背包,你该了解这些!

来源: 代码随想录 (programmercarl.com)

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

例如:

背包最大重量为10。

物品为:

重量价值数量
物品01152
物品13203
物品24302

问背包能背的物品最大价值是多少?

和如下情况有区别么?

重量价值数量
物品01151
物品01151
物品13201
物品13201
物品13201
物品24301
物品24301

题目描述56. 携带矿石资源(第八期模拟笔试) (kamacoder.com)

你是一名宇航员,即将前往一个遥远的行星。在这个行星上,有许多不同类型的矿石资源,每种矿石都有不同的重要性和价值。你需要选择哪些矿石带回地球,但你的宇航舱有一定的容量限制。 

给定一个宇航舱,最大容量为 C。现在有 N 种不同类型的矿石,每种矿石有一个重量 w[i],一个价值 v[i],以及最多 k[i] 个可用。不同类型的矿石在地球上的市场价值不同。你需要计算如何在不超过宇航舱容量的情况下,最大化你所能获取的总价值。

输入描述

输入共包括四行,第一行包含两个整数 C 和 N,分别表示宇航舱的容量和矿石的种类数量。 

接下来的三行,每行包含 N 个正整数。具体如下: 

第二行包含 N 个整数,表示 N 种矿石的重量。 

第三行包含 N 个整数,表示 N 种矿石的价格。 

第四行包含 N 个整数,表示 N 种矿石的可用数量上限。

输出描述

输出一个整数,代表获取的最大价值。

输入示例

10 3
1 3 4
15 20 30
2 3 2

输出示例

90

解题思路:

本题是一个多重背包问题,可以转化成零一背包问题。参考以上表格将这些物品数量全都变成1,使物品重复出现在list里, 以下代码将数量大于一的物品展开运算,可能会超时:

c, n = map(int, input().split())
weights = [x for x in map(int,input().split())]
values = [x for x in map(int,input().split())]
quanties = [x for x in map(int,input().split())]
# print(values, quanties)
for i in range(len(quanties)):while quanties[i]>1:weights.append(weights[i])values.append(values[i])quanties[i] -= 1
# print(weights, values)#convert to 0-1 bag problems
dp = [0]*(c+1)
def bag():for i in range(len(weights)):for j in range(c, weights[i]-1, -1):dp[j] = max(dp[j], dp[j-weights[i]]+values[i])print(dp)print(dp[c])
bag()

因此需要遍历时将物品数量纳入考虑:

c, n = map(int, input().split())
weights = [x for x in map(int,input().split())]
values = [x for x in map(int,input().split())]
quanties = [x for x in map(int,input().split())]dp = [0]*(c+1)
def bag():for i in range(len(weights)):for j in range(c, weights[i]-1, -1):k = 1while k<=quanties[i] and (j-k*weights[i]>= 0):dp[j] = max(dp[j], dp[j-k*weights[i]]+values[i]*k)# print(dp)k += 1# print(dp)print(dp[c])
bag()

时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量

背包问题总结篇!

参考:代码随想录 (programmercarl.com)

背包递推公式

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 动态规划:416.分割等和子集(opens new window)
  • 动态规划:1049.最后一块石头的重量 II(opens new window)

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

  • 动态规划:494.目标和(opens new window)
  • 动态规划:518. 零钱兑换 II(opens new window)
  • 动态规划:377.组合总和Ⅳ(opens new window)
  • 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

  • 动态规划:474.一和零(opens new window)

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

  • 动态规划:322.零钱兑换(opens new window)
  • 动态规划:279.完全平方数(opens new window)

遍历顺序

01背包

在动态规划:关于01背包问题,你该了解这些! (opens new window)中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

和动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!

完全背包

说完01背包,再看看完全背包。

在动态规划:关于完全背包,你该了解这些! (opens new window)中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

相关题目如下:

  • 求组合数:动态规划:518.零钱兑换II(opens new window)
  • 求排列数:动态规划:377. 组合总和 Ⅳ (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

  • 求最小数:动态规划:322. 零钱兑换 (opens new window)、动态规划:279.完全平方数(opens new window)

对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了。

这篇关于代码随想录Day 40|Leetcode|Python|139.单词拆分 ● 关于多重背包,你该了解这些! ● 背包问题总结篇!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969034

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499