通过三角形相似原理实现单目测距

2024-05-07 23:04

本文主要是介绍通过三角形相似原理实现单目测距,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      根据三角形相似原理计算相机焦距,公式为:F = (P * D) / W

      其中:

      F: 待求的相机的焦距

      P: 图像中目标的宽度,单位像素

      D: 真实目标与相机的距离,单位厘米

      W: 真实目标的宽度,单位厘米

      计算焦距前,首先要有一幅带目标的图像,这里以人脸为例,记下采集此幅图像时,相机与人脸的实际距离D,真实人脸的宽度W,通过HaarCascade计算人脸在图像中的宽度P。

      获取相机焦距后,再根据公式:D' = (F * W) / P 即可计算出此目标与相机的实时距离。

      测试代码如下:

namespace {bool calculate_image_face_width(cv::CascadeClassifier& face_cascade, const char* image_name, int& P)
{cv::Mat bgr = cv::imread(image_name, 1);if (!bgr.data) {std::cerr << "Error: fail to imread: " << image_name << "\n";return false;}cv::Mat gray;cv::cvtColor(bgr, gray, cv::COLOR_BGR2GRAY);cv::equalizeHist(gray, gray);std::vector<cv::Rect> faces;face_cascade.detectMultiScale(gray, faces);//for (auto i = 0; i < faces.size(); ++i)//	cv::rectangle(bgr, faces[i], cv::Scalar(255, 0, 0), 1);//cv::imwrite("../../../data/result.jpg", bgr);if (faces.size() != 1) {std::cerr << "Error: faces size: " << faces.size() << "\n";return false;}P = faces[0].width;return true;
}inline int  calculate_focal_length(int P, int D, int W)
{return ((P * D) / W);
}inline int calculate_distance(int F, int W, int P)
{return ((F * W) / P);
}} // namespaceint test_monocular_ranging_face_triangle_similarity()
{
#ifdef _MSC_VERconstexpr char* file_name{ "../../../data/haarcascade_frontalface_alt.xml" };constexpr char* image_name{ "../../../data/images/face/1.jpg" };
#elseconstexpr char* file_name{ "data/haarcascade_frontalface_alt.xml" };constexpr char* image_name{ "data/images/face/1.jpg" };
#endifcv::CascadeClassifier face_cascade;if (!face_cascade.load(file_name)) {std::cerr << "Error: fail to load file:" << file_name << "\n";return -1;}auto P{ 0 };if (!calculate_image_face_width(face_cascade, image_name, P)) {std::cerr << "Error: fail to get_image_face_width\n";return -1;}std::cout << "the width of the face in the image: " << P << " pixels\n";constexpr int D{ 60 }, W{ 18 }; // cmconst auto F = calculate_focal_length(P, D, W);std::cout << "focal length: " << F << "\n";cv::VideoCapture cap(1); // usb cameraif (!cap.isOpened()) {std::cerr << "Error: fail to open capture\n";return -1;}cv::Mat gray;constexpr char* winn_ame{ "Monocular Ranging" };cv::namedWindow(winn_ame, 1);const std::string text{ "Distance = " };for (;;) {cv::Mat frame;cap >> frame; // get a new frame from cameracv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);cv::equalizeHist(gray, gray);std::vector<cv::Rect> faces;face_cascade.detectMultiScale(gray, faces);for (auto i = 0; i < faces.size(); ++i) {cv::rectangle(frame, faces[i], cv::Scalar(255,0,0), 1);P = faces[i].width;auto D2 = calculate_distance(F, W, P) / 100.; // mauto tmp = std::to_string(D2);auto pos = tmp.find(".");if (pos != std::string::npos)tmp = tmp.substr(0, pos+3);std::string content = text + tmp + " m";cv::putText(frame, content, cv::Point(faces[i].x, faces[i].y - 25), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 0, 255), 1);}cv::imshow(winn_ame, frame);if (cv::waitKey(30) >= 0)break;}return 0;
}

      说明

      (1).通过OpenCV的cv::CascadeClassifier检测人脸;

      (2).函数calculate_image_face_width用于计算人脸在图像中的宽度;

      (3).函数calculate_focal_length用于计算相机焦距;

      (4).函数calculate_distance用于计算人脸与相机的距离。

      执行结果截图如下所示:原始图像来自于网络

      GitHub:https://github.com/fengbingchun/NN_Test

这篇关于通过三角形相似原理实现单目测距的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968640

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可