2024DCIC海上风电出力预测Top方案 + 光伏发电出力高分方案学习记录

本文主要是介绍2024DCIC海上风电出力预测Top方案 + 光伏发电出力高分方案学习记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海上风电出力预测

赛题数据

海上风电出力预测的用电数据分为训练组和测试组两大类,主要包括风电场基本信息、气象变量数据和实际功率数据三个部分。风电场基本信息主要是各风电场的装机容量等信息;气象变量数据是从2022年1月到2024年1月份,各风电场每间隔15分钟的气象数据;实际功率数据是各风电场每间隔15分钟的发电出力数据。
在这里插入图片描述

方案

1.特征构建

for col in tqdm.tqdm(num_cols):# 历史平移 + 差分特征 + 二阶差分特征for i in [1,2,3,4,5,6,7,15,30,50] + [1*96,2*96,3*96,4*96,5*96]:df[f'{col}_shift{i}'] = df.groupby('stationId')[col].shift(i)df[f'{col}_feture_shift{i}'] = df.groupby('stationId')[col].shift(-i)df[f'{col}_diff{i}'] = df[f'{col}_shift{i}'] - df[col]df[f'{col}_feture_diff{i}'] = df[f'{col}_feture_shift{i}'] - df[col]df[f'{col}_2diff{i}'] = df.groupby('stationId')[f'{col}_diff{i}'].diff(1)df[f'{col}_feture_2diff{i}'] = df.groupby('stationId')[f'{col}_feture_diff{i}'].diff(1)# 均值相关df[f'{col}_3mean'] = (df[f'{col}'] + df[f'{col}_feture_shift1'] + df[f'{col}_shift1'])/3df[f'{col}_5mean'] = (df[f'{col}_3mean']*3 + df[f'{col}_feture_shift2'] + df[f'{col}_shift2'])/5df[f'{col}_7mean'] = (df[f'{col}_5mean']*5 + df[f'{col}_feture_shift3'] + df[f'{col}_shift3'])/7df[f'{col}_9mean'] = (df[f'{col}_7mean']*7 + df[f'{col}_feture_shift4'] + df[f'{col}_shift4'])/9df[f'{col}_11mean'] = (df[f'{col}_9mean']*9 + df[f'{col}_feture_shift5'] + df[f'{col}_shift5'])/11df[f'{col}_shift_3_96_mean'] = (df[f'{col}_shift{1*96}'] + df[f'{col}_shift{2*96}'] + df[f'{col}_shift{3*96}'])/3df[f'{col}_shift_5_96_mean'] = (df[f'{col}_shift_3_96_mean']*3 + df[f'{col}_shift{4*96}'] + df[f'{col}_shift{5*96}'])/5df[f'{col}_future_shift_3_96_mean'] = (df[f'{col}_feture_shift{1*96}'] + df[f'{col}_feture_shift{2*96}'] + df[f'{col}_feture_shift{3*96}'])/3df[f'{col}_future_shift_5_96_mean'] = (df[f'{col}_future_shift_3_96_mean']*3 + df[f'{col}_feture_shift{4*96}'] + df[f'{col}_feture_shift{5*96}'])/3# 窗口统计for win in [3,5,7,14,28]:df[f'{col}_win{win}_mean'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').mean().valuesdf[f'{col}_win{win}_max'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').max().valuesdf[f'{col}_win{win}_min'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').min().valuesdf[f'{col}_win{win}_std'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').std().valuesdf[f'{col}_win{win}_skew'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').skew().valuesdf[f'{col}_win{win}_kurt'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').kurt().valuesdf[f'{col}_win{win}_median'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').median().values# 逆序df = df.sort_values(['stationId','time'], ascending=False)df[f'{col}_future_win{win}_mean'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').mean().valuesdf[f'{col}_future_win{win}_max'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').max().valuesdf[f'{col}_future_win{win}_min'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').min().valuesdf[f'{col}_future_win{win}_std'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').std().valuesdf[f'{col}_future_win{win}_skew'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').skew().valuesdf[f'{col}_future_win{win}_kurt'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').kurt().valuesdf[f'{col}_future_win{win}_median'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').median().values# 恢复正序df = df.sort_values(['stationId','time'], ascending=True)# 二阶特征df[f'{col}_win{win}_mean_loc_diff'] = df[col] - df[f'{col}_win{win}_mean']df[f'{col}_win{win}_max_loc_diff'] = df[col] - df[f'{col}_win{win}_max']df[f'{col}_win{win}_min_loc_diff'] = df[col] - df[f'{col}_win{win}_min']df[f'{col}_win{win}_median_loc_diff'] = df[col] - df[f'{col}_win{win}_median']df[f'{col}_future_win{win}_mean_loc_diff'] = df[col] - df[f'{col}_future_win{win}_mean']df[f'{col}_future_win{win}_max_loc_diff'] = df[col] - df[f'{col}_future_win{win}_max']df[f'{col}_future_win{win}_min_loc_diff'] = df[col] - df[f'{col}_future_win{win}_min']df[f'{col}_future_win{win}_median_loc_diff'] = df[col] - df[f'{col}_future_win{win}_median']for col in ['is_precipitation']:for win in [4,8,12,20,48,96]:df[f'{col}_win{win}_mean'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').mean().valuesdf[f'{col}_win{win}_sum'] = df.groupby('stationId')[col].rolling(window=win, min_periods=3, closed='left').sum().values

☆2.目标转化

在这里插入图片描述
这里的处理应该是最终获TOP的trick。之前在砍老师的文章中也提到了这个处理,例如预测房价时,转换为预测单位面积下的房价。

光伏发电

本题海上风力很类似。

方案

特征


df["年"] = df["时间"].dt.yeardf["季节"] = df["时间"].dt.quarter
df["月"] = df["时间"].dt.monthdf["日"] = df["时间"].dt.day
df["周"] = df["时间"].dt.weekdf["分"] = df["时间"].dt.minute // 15 + df["时间"].dt.hour * 4
df["分"] = df["分"].astype("category")df['100m风速(100m/s)'] = df['100m风速(100m/s)'] * np.sin(np.pi * df['100m风向(°)'] / 180)
df['10米风速(10m/s)'] = df['10米风速(10m/s)'] * np.sin(np.pi * df['10米风向(°)'] / 180)
df["光照/温度"] = df["辐照强度(J/m2)"] / df["温度(K)"]# 这里做平移 + 差分
dfs = []
for site, df_site in df.groupby("光伏用户编号"):df_site = df_site.sort_values("时间")df_site["辐照强度(J/m2) - 1"] = df_site["辐照强度(J/m2)"].shift(1) - df_site["辐照强度(J/m2)"]df_site["辐照强度(J/m2) - 8"] = df_site["辐照强度(J/m2)"].shift(8) - df_site["辐照强度(J/m2)"]dfs.append(df_site)
df = pd.concat(dfs, axis=0)# 这里是提取一个辐照强度和当天最强辐照强度的比值特征(因为夏天和冬天的辐照强度不同,比值特征会更加合理)
df["日期"] = df["时间"].dt.date
day_max_values = df[["光伏用户编号", "日期", "辐照强度(J/m2)"]].groupby(by=["光伏用户编号", "日期"]).max()
day_max_values = day_max_values.rename(columns={x: x + "_max" for x in day_max_values.columns}).reset_index()
df = pd.merge(df, day_max_values, on=["光伏用户编号", "日期"], how="left").drop(columns=["日期"])
df["辐照强度(J/m2)_max"] = df["辐照强度(J/m2)"] / df["辐照强度(J/m2)_max"]# 温差特征
df["日期"] = df["时间"].dt.date
day_max_values = df[["光伏用户编号", "日期", "温度(K)"]].groupby(by=["光伏用户编号", "日期"]).max()
day_min_values = df[["光伏用户编号", "日期", "温度(K)"]].groupby(by=["光伏用户编号", "日期"]).min()
day_max_values = day_max_values.rename(columns={x: x + "_max" for x in day_max_values.columns}).reset_index()
day_min_values = day_min_values.rename(columns={x: x + "_min" for x in day_min_values.columns}).reset_index()
df = pd.merge(df, day_max_values, on=["光伏用户编号", "日期"], how="left")
df = pd.merge(df, day_min_values, on=["光伏用户编号", "日期"], how="left").drop(columns=["日期"])
df["温度(K)_max"] = df["温度(K)_max"] - df["温度(K)"]
df["温度(K)_min"] = df["温度(K)"] - df["温度(K)_min"]
df = df.rename(columns={"辐照强度(J/m2)_max": "光照/当天最强光照","温度(K)_max": "与当天最高温度之差","温度(K)_min": "与当天最低温度之差"
})

这篇关于2024DCIC海上风电出力预测Top方案 + 光伏发电出力高分方案学习记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968387

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

SpringBoot3.X 整合 MinIO 存储原生方案

《SpringBoot3.X整合MinIO存储原生方案》本文详细介绍了SpringBoot3.X整合MinIO的原生方案,从环境搭建到核心功能实现,涵盖了文件上传、下载、删除等常用操作,并补充了... 目录SpringBoot3.X整合MinIO存储原生方案:从环境搭建到实战开发一、前言:为什么选择MinI

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项