深度学习之autoEncoder

2024-05-07 17:58
文章标签 学习 深度 autoencoder

本文主要是介绍深度学习之autoEncoder,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1)autoencoder

autoencoder是一种无监督的学习算法,他利用反向传播算法,让目标值等于输入值。如图所示:


Autoencoder尝试学习一个  的函数。也就是说autoencoder尝试逼近一个恒等函数,使得输出接近于输入 。当然为了使这个函数有意义,需要加入一些限制条件(比如说限制隐藏神经元的数目),就可以发现一些有意义的结构。Autoencoder可以学习到数据的一些压缩表示。例如如果输入数据为100维,隐藏层为50个,那么就需要从这50维的数据中重构出100维的输出,使这个输出接近于100维的输入。因此这个隐藏层的50维的数据就必然会包含着输入数据的一些相关性。所以说autoencoder就是为了学习到输入数据的相关性表示的一种方法。

上面提到的对autoencoder可以加入一些“隐藏神经元的数目”的限制,来学习到输入数据的一些有意义的表示。其实也可以引入稀疏性的限制,而这才是autoencoder中最常用到的限制。稀疏性限制是指如果当神经元的输出接近于1的时候我们认为它被激活,而输出接近于0的时候认为它被抑制,那么使得神经元大部分的时间都是被抑制的限制则被称作稀疏性限制。这里我们假设的神经元的激活函数是sigmoid函数。另 表示隐藏神经元的激活度,那么定义为隐藏神经元的平均激活度。另进而引入稀疏性限制。可以另等接近于0的较小值。要实现这个限制,我们需要给目标函数加入一个惩罚因子(其实是一个相对熵

因此,总的代价函数为

因此更新项为


2)反向传播算法回顾:

假设对于一个样本个数为m的样本集,对于单个样例,其代价函数为。那么对于样本集整体的代价函数为。第一项为均方差项,第二项是Regularization,是为了防止过拟合而产生的。 用于控制前后两项的相对重要性。

反向传播算法的目的是针对 来求取函数的最小值。首先我们需要将每一个参数初始化为一个很小的接近于0的随机值,然后利用梯度下降法的迭代更新权重。


其中  为学习效率,这也是一个很重要的参数。这里面最大的问题就变成了求取偏导数的问题。

反向传播算法的细节:


3)从self-learning到深度网络

有了autoencoder的基本概念,我们可以利用autoencoder来构建深度网络,近些年的一些列研究表明构建深度网络对于解决很多的计算机视觉问题具有重要意义,并能比现有的一些常规方法取得更好的效果。

 Self-learning

Self-learning是指可以利用autoecoder从未标注的数据中自我的学习特征。具体说来,给定一组未标注的数据 ,训练sparse autoencoder,即:


利用训练得到的参数  ,给定一个新的样本x,计算激活量a,作为提取出的特征。相对比于原始的样本数据x,激活量a可能会对数据有更好的表示。


4)深度网络:

我们可以把self-learning扩展到深度网络,即拥有多个隐藏层的神经网络。

对于这样的深度网络,利用反向传播算法很容易收敛到局部最小值,从而无法得到好的分类效果。对此,我们采用逐层贪婪算法来训练深度网络。即先利用原始输入来训练网络的第一层,得到其参数  ;然后网络第一层将原始输入转化成为由隐藏单元激活值组成的向量(假设该向量为A),接着把A作为第二层的输入,继续训练得到第二层的参数 ;最后,对后面的各层同样采用的策略,即将前层的输出作为下一层输入的方式依次训练。对于上述训练方式,在训练每一层参数的时候,会固定其它各层参数保持不变。所以,如果想得到更好的结果,在上述训练过程完成之后,可以通过反向传播算法同时调整所有层的参数以改善结果,这个过程一般被称作“fine-tuning”。下面的组图揭示了这一过程。







这篇关于深度学习之autoEncoder的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967987

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实