易用的深度学习框架Keras简介

2024-05-07 16:48

本文主要是介绍易用的深度学习框架Keras简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

致读者:本文写于keras开发初期,目前keras已经迭代到1.0版本,很多API都发生了较大的变化,所以本文的粘贴的一些代码可能已经过时,在我的github上有更新后的代码,读者需要的话可以看github上的代码:https://github.com/wepe/MachineLearning

之前我一直在使用Theano,前面五篇Deeplearning相关的文章也是学习Theano的一些笔记,当时已经觉得Theano用起来略显麻烦,有时想实现一个新的结构,就要花很多时间去编程,所以想过将代码模块化,方便重复使用,但因为实在太忙没有时间去做。最近发现了一个叫做Keras的框架,跟我的想法不谋而合,用起来特别简单,适合快速开发。

1. Keras简介

Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU。使用文档在这:http://keras.io/,这个框架貌似是刚刚火起来的,使用上的问题可以到github提issue:https://github.com/fchollet/keras 

下面简单介绍一下怎么使用Keras,以Mnist数据库为例,编写一个CNN网络结构,你将会发现特别简单。

2. Keras里的模块介绍

  • Optimizers

    顾名思义,Optimizers包含了一些优化的方法,比如最基本的随机梯度下降SGD,另外还有Adagrad、Adadelta、RMSprop、Adam,一些新的方法以后也会被不断添加进来。

    keras.optimizers.SGD(lr=0.01, momentum=0.9, decay=0.9, nesterov=False)

    上面的代码是SGD的使用方法,lr表示学习速率,momentum表示动量项,decay是学习速率的衰减系数(每个epoch衰减一次),Nesterov的值是False或者True,表示使不使用Nesterov momentum。其他的请参考文档。

  • Objectives

    这是目标函数模块,keras提供了mean_squared_error,mean_absolute_error
    ,squared_hinge,hinge,binary_crossentropy,categorical_crossentropy这几种目标函数。

    这里binary_crossentropy 和 categorical_crossentropy也就是常说的logloss.

  • Activations

    这是激活函数模块,keras提供了linear、sigmoid、hard_sigmoid、tanh、softplus、relu、softplus,另外softmax也放在Activations模块里(我觉得放在layers模块里更合理些)。此外,像LeakyReLU和PReLU这种比较新的激活函数,keras在keras.layers.advanced_activations模块里提供。

  • Initializations

    这是参数初始化模块,在添加layer的时候调用init进行初始化。keras提供了uniform、lecun_uniform、normal、orthogonal、zero、glorot_normal、he_normal这几种。

  • layers

    layers模块包含了core、convolutional、recurrent、advanced_activations、normalization、embeddings这几种layer。

    其中core里面包含了flatten(CNN的全连接层之前需要把二维特征图flatten成为一维的)、reshape(CNN输入时将一维的向量弄成二维的)、dense(就是隐藏层,dense是稠密的意思),还有其他的就不介绍了。convolutional层基本就是Theano的Convolution2D的封装。

  • Preprocessing

    这是预处理模块,包括序列数据的处理,文本数据的处理,图像数据的处理。重点看一下图像数据的处理,keras提供了ImageDataGenerator函数,实现data augmentation,数据集扩增,对图像做一些弹性变换,比如水平翻转,垂直翻转,旋转等。

  • Models

    这是最主要的模块,模型。上面定义了各种基本组件,model是将它们组合起来,下面通过一个实例来说明。

3.一个实例:用CNN分类Mnist

  • 数据下载

    Mnist数据在其官网上有提供,但是不是图像格式的,因为我们通常都是直接处理图像,为了以后程序能复用,我把它弄成图像格式的,这里可以下载:http://pan.baidu.com/s/1qCdS6,共有42000张图片。

  • 读取图片数据

    keras要求输入的数据格式是numpy.array类型(numpy是一个python的数值计算的库),所以需要写一个脚本来读入mnist图像,保存为一个四维的data,还有一个一维的label,代码:

#coding:utf-8
"""
Author:wepon
Source:https://github.com/wepe
file:data.py
"""import os
from PIL import Image
import numpy as np#读取文件夹mnist下的42000张图片,图片为灰度图,所以为1通道,
#如果是将彩色图作为输入,则将1替换为3,并且data[i,:,:,:] = arr改为data[i,:,:,:] = [arr[:,:,0],arr[:,:,1],arr[:,:,2]]
def load_data():data = np.empty((42000,1,28,28),dtype="float32")label = np.empty((42000,),dtype="uint8")imgs = os.listdir("./mnist")num = len(imgs)for i in range(num):img = Image.open("./mnist/"+imgs[i])arr = np.asarray(img,dtype="float32")data[i,:,:,:] = arrlabel[i] = int(imgs[i].split('.')[0])return data,label
  • 构建CNN,训练

    短短二十多行代码,构建一个三个卷积层的CNN,直接读下面的代码吧,有注释,很容易读懂:

#导入各种用到的模块组件
from __future__ import absolute_import
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data#加载数据
data, label = load_data()
print(data.shape[0], ' samples')#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)###############
#开始建立CNN模型
################生成一个model
model = Sequential()#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 1, 5, 5, border_mode='valid')) 
model.add(Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8,4, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(poolsize=(2, 2)))#第三个卷积层,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16, 8, 3, 3, border_mode='valid')) 
model.add(Activation('tanh'))
model.add(MaxPooling2D(poolsize=(2, 2)))#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(16*4*4, 128, init='normal'))
model.add(Activation('tanh'))#Softmax分类,输出是10类别
model.add(Dense(128, 10, init='normal'))
model.add(Activation('softmax'))#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(l2=0.0,lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,class_mode="categorical")#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data, label, batch_size=100,nb_epoch=10,shuffle=True,verbose=1,show_accuracy=True,validation_split=0.2)
  • 代码使用与结果

代码放在我github的机器学习仓库里:https://github.com/wepe/MachineLearning,非github用户直接点右下的DownloadZip。

在/DeepLearning Tutorials/keras_usage目录下包括data.py,cnn.py两份代码,下载Mnist数据后解压到该目录下,运行cnn.py这份文件即可。

结果如下所示,在Epoch 9达到了0.98的训练集识别率和0.97的验证集识别率:

这里写图片描述

这篇关于易用的深度学习框架Keras简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967865

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现