ubuntu14.04 安装 tensorflow(附一系列报错方案)

2024-05-07 16:48

本文主要是介绍ubuntu14.04 安装 tensorflow(附一系列报错方案),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果内容侵权的话,联系我,我会立马删了的~因为参考的太多了,如果一一联系再等回复,战线太长了~~蟹蟹给我贡献技术源泉的作者们~

 

最近准备从理论和实验两个方面学习深度学习,所以,前面装好了Theano环境,后来知乎上看到这个回答,就调研了一下各个深度学习框架,我没有看源码,调研也不是很深入,仅仅是为了选择深度学习框架做的一个大概了解~

1. 如何选择深度学习框架?

参考资料如下:

 1. https://github.com/zer0n/deepframeworks/blob/master/README.md

 2. http://blog.csdn.net/qiexingqieying/article/details/51734347

 3. https://www.zhihu.com/question/41907061

 4. http://www.open-open.com/news/view/1069a70

 5. http://www.kuqin.com/shuoit/20151124/349098.html

博客2总结如下:

库名称开发语言速度灵活性文档适合模型平台上手
Caffec++/cuda一般全面CNN所有系统中等
TensorFlowc++/cuda/python中等中等CNN/RNNLinux\OSX
MXNetc++/cuda全面CNN所有系统中等
Torchc/lua/cuda全面CNN/RNNLinux\OSX中等
Theanopython/c++/cuda中等中等CNN/RNNLinux\OSX

(1)Caffe

第一个主流的工业级深度学习工具。它开始于2013年底,由UC Berkely的 Yangqing Jia老师编写和维护的具有出色的卷积神经网络实现。在计算机视觉领域Caffe依然是最流行的工具包。它有很多扩展,但是由于一些遗留的架构问题,不够灵活且对递归网络和语言建模的支持很差。

(2)TensorFlow

Google开源的其第二代深度学习技术——被使用在Google搜索、图像识别以及邮箱的深度学习框架。是一个理想的RNN(递归神经网络)API和实现,TensorFlow使用了向量运算的符号图方法,使得新网络的指定变得相当容易,支持快速开发。缺点是速度慢,内存占用较大。(比如相对于Torch)

(3)MXNet

是李沐和陈天奇等各路英雄豪杰打造的开源深度学习框架,是分布式机器学习通用工具包 DMLC 的重要组成部分。它注重灵活性和效率,文档也非常的详细,同时强调提高内存使用的效率,甚至能在智能手机上运行诸如图像识别等任务。
(4)Torch
Facebook力推的深度学习框架,主要开发语言是C和Lua。有较好的灵活性和速度。它实现并且优化了基本的计算单元,使用者可以很简单地在此基础上实现自己的算法,不用浪费精力在计算优化上面。核心的计算单元使用C或者cuda做了很好的优化。在此基础之上,使用lua构建了常见的模型。缺点是接口为lua语言,需要一点时间来学习。
(5)Theano
2008年诞生于蒙特利尔理工学院,主要开发语言是Python。Theano派生出了大量深度学习Python软件包,最著名的包括 Blocks和 Keras。Theano的最大特点是非常的灵活,适合做学术研究的实验,且对递归网络和语言建模有较好的支持,缺点是速度较慢。
知乎用户 杜客回答如下:
斯坦福的CS231n - Convolutional Neural Networks for Visual Recognition(Winter 2016)中的Lecture 12中,由课程讲师@ Justin Johnson详细介绍了他个人对于主流第三方库的实践经历和看法,时间新,干货多:


然后他强调了几个 用例问题
1.Extract AlexNet or VGG features? Use Caffe
2.Fine tune AlexNet for new classes? Use Caffe
3.Image caption with finetuning?

-> Need pretrained models (Caffe, Torch, Lasagne)

-> Need RNNs (Torch or Lasagne)
-> Use Torch or Lasagna

4.Segmentation?(Classify every pixel)

-> Need pretrained model (Caffe, Torch, Lasagna)-> Need funny loss function
-> If loss function exists in Caffe: Use Caffe
-> If you want to write your own loss: Use Torch

5.Object Detection?

-> Need pretrained model (Torch, Caffe, Lasagne)
-> Need lots of custom imperative code (NOT Lasagne)-> Use Caffe + Python or Torch

6.Language modeling with new RNN structure?

-> Need easy recurrent nets (NOT Caffe, Torch)

-> No need for pretrained models
-> Use Theano or TensorFlow

7.Implemente BatchNorm?

-> Don’t want to derive gradient? Theano or TensorFlow

-> Implement efficient backward pass? Use Torch

最后,JJ比较个人化地给出了自己的偏好:

 

第一部分对于这5个框架的介绍讲述了一些概念以及基本优缺点,首先我的使用情况就是文本训练学习,可能需要用到RNN模型,而且我比较熟悉python一些,C++以及lua都不太会,所以基本确定要了解Theano 和 Tensorflow这两个框架,杜客在知乎回答的内容中,选择tensorflow还是Theano,可以看出大牛介绍的主要还是图像领域的一些应用,然后第6点,Language modeling with new RNN structure也可以基本确定我们需要这两个框架。

然后选择谁?虽然Caffe的作者贾扬清老师说“都是基于Python的符号运算库,TensorFlow显然支持更好,Google也比高校有更多的人力投入。Theano的主要开发者现在都在Google,可以想见将来的工程资源上也会更偏向于TF一些”。知乎用户张昊说“ 1. 看你做什么application 2. 看哪个framework能够提供给你最多与你所做的问题相关的资源。举个例子,比如做language相关,在小数据上跑跑实验的话我觉得theano不错,网上能找到的相关资源(比如其他相关paper的实现,model)很多。如果做视觉相关的那theano的资源跟caffe和torch比就少多了,所以caffe和torch可能会是更好的选择。TF也不错,最近Google promote的很厉害,估计随着用的人越来越多在一两年内资源也会越来越多。”鉴于我目前只是学习一下,所以决定使用Theano ,但是今天还是花了蟹时间安装Tensorflow。

 

2.安装Tensorflow

Ubuntu14.04+cuda7.5+cudnnv4+Tensorflow

基本根据官方给的教程就可以安装了https://www.tensorflow.org,然后学校有时候打不开界面,所以也可以参考这里。

我选择的pip install方式。

$ sudo apt-get install python-pip python-dev

其实这些工具前面好像安装过了,但是怕有问题就再执行一遍,选择符合自己情况的命令执行下去。

# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl

出现错误,在教程里的common problems中说:

...
SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed

Solution: Download the wheel manually via curl or wget, and pip install locally.所以使用wget命令下载再执行安装。

wget https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl
sudo pip install tensorflow-0.9.0-cp27-none-linux_x86_64.whl

接着测试tensorflow.

Open a terminal and type the following:

复制代码
$ python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
>>>
复制代码

没有问题。

$ python -c 'import os; import inspect; import tensorflow; print(os.path.dirname(inspect.getfile(tensorflow)))'

结果如下:

测试运行:

$ python -m tensorflow.models.image.mnist.convolutional

出现错误:

复制代码
lvxia@kde:~$ python -m tensorflow.models.image.mnist.convolutional
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
Extracting data/train-images-idx3-ubyte.gz
Traceback (most recent call last):File "/usr/lib/python2.7/runpy.py", line 162, in _run_module_as_main"__main__", fname, loader, pkg_name)File "/usr/lib/python2.7/runpy.py", line 72, in _run_codeexec code in run_globalsFile "/usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py", line 316, in <module>tf.app.run()File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 30, in runsys.exit(main(sys.argv))File "/usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py", line 128, in maintrain_data = extract_data(train_data_filename, 60000)File "/usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py", line 75, in extract_databuf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images)File "/usr/lib/python2.7/gzip.py", line 261, in readself._read(readsize)File "/usr/lib/python2.7/gzip.py", line 308, in _readself._read_eof()File "/usr/lib/python2.7/gzip.py", line 347, in _read_eofhex(self.crc)))
IOError: CRC check failed 0xe1d362ba != 0x90dd462eL
复制代码

 https://github.com/tensorflow/tensorflow/issues/1319中的解决方式:

因此,进入convolutional.py所在目录,修改文件权限,然后将WORK_DIRECTORY的data修改为 /usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/data 即可。

sudo chmod 777 convolutional.py

重新执行:

python -m tensorflow.models.image.mnist.convolutional

还是出现错误

E tensorflow/stream_executor/cuda/cuda_dnn.cc:286] Loaded cudnn library: 5005 but source was compiled against 4007. If using a binary install, upgrade your cudnn library to match. If building from sources, make sure the library loaded matches the version you specified during compile configuration.

可以看到是cudnn版本不一致的问题导致的。

然后官网上有这么一句“Download cuDNN v4 (v5 is currently a release candidate and is only supported when installing TensorFlow from sources).”,所以我就下载了cuDNN v4。

tar xvzf cudnn-7.0-linux-x64-v4.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-7.5/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-7.5/lib64
sudo chmod a+r /usr/local/cuda-7.5/include/cudnn.h /usr/local/cuda-7.5/lib64/libcudnn*

我忘记以前怎么操作的了,我的/esr/local文件夹下有两个cuda文件,一个是cuda一个是cuda-7.5.这里我把他放在cuda7.5文件夹下面。

然后执行上述命令就没有问题了。

 

中间晕晕呼呼还尝试了一遍源代码安装方式,就是官网上的install from sources,基本步骤也按照上面来,结合 博客 博客 就可以了,碰到蟹问题,基本google能找出解决办法的。

这篇博客讲述了tensorflow源码目录结构的一些知识。

 

 

这里记录几个小问题和解决方法:

(1)OSError - Errno 13 Permission denied 

chown -R user-id:group-id /path/to/the/directory

(2)AttributeError: type object 'NewBase' has no attribute 'is_abstract'

sudo pip install six --upgrade --target="/Library/Python/2.7/site-packages/"

(3)./configure 在 tensorflow目录下,这个在源代码安装方式中用到这个配置了。

这篇关于ubuntu14.04 安装 tensorflow(附一系列报错方案)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967863

相关文章

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

虚拟机Centos7安装MySQL数据库实践

《虚拟机Centos7安装MySQL数据库实践》用户分享在虚拟机安装MySQL的全过程及常见问题解决方案,包括处理GPG密钥、修改密码策略、配置远程访问权限及防火墙设置,最终通过关闭防火墙和停止Net... 目录安装mysql数据库下载wget命令下载MySQL安装包安装MySQL安装MySQL服务安装完成

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.