理解和实现分布式TensorFlow集群完整教程

2024-05-07 16:08

本文主要是介绍理解和实现分布式TensorFlow集群完整教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

手把手教你搭建分布式集群,进入生产环境的TensorFlow

分布式TensorFlow简介

前一篇《分布式TensorFlow集群local server使用详解》我们介绍了分布式TensorFlow的基本概念,现在我们可以动手搭建一个真正的分布式TensorFlow集群。

分布式TensorFlow集群由多个服务端进程和客户端进程组成,在某些场景下,服务端和客户端可以写到同一个Python文件并起在同一个进程,但为了简化代码让大家更好理解分布式架构,我们将启动两个worker并使用单独的客户端进程。


确认TensorFlow版本

首先我们需要安装和确认TensorFlow的版本,注意0.8版本以前的TensorFlow不支持分布式,使用以前版本需要重新合Patch和打包。

python -c  "import tensorflow; print(tensorflow.__version__)"

使用TensorFlow容器

如果本地已安装Docker,通过容器使用TensorFlow环境更加简单,只需一行命令。

sudo docker run -it tensorflow/tensorflow bash

Docker除了实现资源隔离,还可以管理不同版本的环境,例如可以很容易试用最新的RC版本。

sudo docker run -it tensorflow/tensorflow:r0.9rc0 bash

实现TensorFlow服务端

很多开发者读过TensorFlow官方的Distributed Guide,想把分布式TensorFlow运行起来却十分困难,主要原因是官方文档没有提供完整的例子,而且提供的代码片段只能在0.9中运行,因此很多人尝试修改那段代码还是跑不起来。

其实分布式TensorFlow使用非常简单,我们并不需要一个通用的程序,只要用几行代码分别实现服务端和客户端即可,最简单的服务端代码如下worker1.py。

import tensorflow as tf 
worker1 = "10.235.114.12:2222"
worker2 = "10.235.114.12:2223"
worker_hosts = [worker1, worker2]
cluster_spec = tf.train.ClusterSpec({ "worker": worker_hosts})
server = tf.train.Server(cluster_spec, job_name="worker", task_index=0)
server.join()

这里我们定义了两个worker,其中job名都是“worker”,官方文档中还定义了名为“ps”的job,实际上有没有都可以,而worker可以是本地不同端口的两个进程或者多台服务器上的进程。

为了模拟分布式环境,我们编写worker2.py启动第二个worker,注意代码上稍有区别,因为index变了不能与前面的冲突,为了避免端口被容器隔离我们可以使用原来的Docker容器。

import tensorflow as tf 
worker1 = "10.235.114.12:2222"
worker2 = "10.235.114.12:2223"
worker_hosts = [worker1, worker2]
cluster_spec = tf.train.ClusterSpec({ "worker": worker_hosts})
server = tf.train.Server(cluster_spec, job_name="worker", task_index=1)
server.join()

可以看到worker1和worker2分别监听本地的2222和2223端口,接下来可以单独写客户端应用,连接这两个targe即可。

实现TensorFlow客户端

Client的代码我们写得稍微复杂些,就是构造写线性数据,其中斜率是2、截距是10,如果梯度下降算法正确的话最终w和b的输出应该也接近2和10。


如我们所料,最终结果相当接近2和10,同时指定了第一个worker的CPU来执行梯度下降的算法,通过cluster spec我们还可以定义更灵活的集群,客户端也可以通过"tf.device"来动态指定CPU和GPU计算资源。在生产环境下,官方推荐使用ps服务器存储Variables,而ps其实是和我们定义的worker一样,只是job名不同,架构可以参见官方文档的tasks图。

最后总结

希望通过这个完整的使用教程,大家都能亲自实现分布式TensorFlow集群,并且编写灵活的服务端和客户端应用。

而在搭建过程中,大家可能发现TensorFlow只是一个深度学习的Library,我们需要实现和部署服务端、客户端应用,而在集群定义中存在一个较严重的问题,就是cluster spec需要在进程启动时指定,无法实现动态的扩容或缩容,这个问题社区希望通过引入Kubernetes集群管理工具来解决。还有一个问题就是我们的服务端应用启动时只能bind localhost,我们也在Github建了对应Issue,如果大家都这些问题感兴趣,也请继续关注我和我们后续的文章。

这篇关于理解和实现分布式TensorFlow集群完整教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967822

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima