scala基础----序列trait:Seq、IndexedSeq及LinearSeq

2024-05-07 15:32

本文主要是介绍scala基础----序列trait:Seq、IndexedSeq及LinearSeq,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Seq trait用于表示序列。所谓序列,指的是一类具有一定长度的可迭代访问的对象,其中每个元素均带有一个从0开始计数的固定索引位置。

序列的操作有以下几种,如下表所示:

  • 索引和长度的操作 apply、isDefinedAt、length、indices,及lengthCompare。序列的apply操作用于索引访问;因此,Seq[T]类型的序列也是一个以单个Int(索引下标)为参数、返回值类型为T的偏函数。换言之,Seq[T]继承自Partial Function[Int, T]。序列各元素的索引下标从0开始计数,最大索引下标为序列长度减一。序列的length方法是collection的size方法的别名。lengthCompare方法可以比较两个序列的长度,即便其中一个序列长度无限也可以处理。
  • 索引检索操作(indexOf、lastIndexOf、indexofSlice、lastIndexOfSlice、indexWhere、lastIndexWhere、segmentLength、prefixLength)用于返回等于给定值或满足某个谓词的元素的索引。
  • 加法运算(+:,:+,padTo)用于在序列的前面或者后面添加一个元素并作为新序列返回。
  • 更新操作(updated,patch)用于替换原序列的某些元素并作为一个新序列返回。
  • 排序操作(sorted, sortWith, sortBy)根据不同的条件对序列元素进行排序。
  • 反转操作(reverse, reverseIterator, reverseMap)用于将序列中的元素以相反的顺序排列。
  • 比较(startsWith, endsWith, contains, containsSlice, corresponds)用于对两个序列进行比较,或者在序列中查找某个元素。
  • 多集操作(intersect, diff, union, distinct)用于对两个序列中的元素进行类似集合的操作,或者删除重复元素。

如果一个序列是可变的,它提供了另一种更新序列中的元素的,但有副作用的update方法,Scala中常有这样的语法,如seq(idx) = elem。它只是seq.update(idx, elem)的简写,所以update 提供了方便的赋值语法。应注意update 和updated之间的差异。update 再原来基础上更改序列中的元素,并且仅适用于可变序列。而updated 适用于所有的序列,它总是返回一个新序列,而不会修改原序列。

Seq类的操作

WHAT IT IS WHAT IT DOES
索引和长度  
xs(i) (或者写作xs apply i)。xs的第i个元素
xs isDefinedAt i 测试xs.indices中是否包含i。
xs.length 序列的长度(同size)。
xs.lengthCompare ys 如果xs的长度小于ys的长度,则返回-1。如果xs的长度大于ys的长度,则返回+1,如果它们长度相等,则返回0。即使其中一个序列是无限的,也可以使用此方法。
xs.indices xs的索引范围,从0到xs.length - 1。
索引搜索  
xs indexOf x 返回序列xs中等于x的第一个元素的索引(存在多种变体)。
xs lastIndexOf x 返回序列xs中等于x的最后一个元素的索引(存在多种变体)。
xs indexOfSlice ys 查找子序列ys,返回xs中匹配的第一个索引。
xs indexOfSlice ys 查找子序列ys,返回xs中匹配的倒数一个索引。
xs indexWhere p xs序列中满足p的第一个元素。(有多种形式)
xs segmentLength (p, i) xs中,从xs(i)开始并满足条件p的元素的最长连续片段的长度。
xs prefixLength p xs序列中满足p条件的先头元素的最大个数。
加法:  
x +: xs 由序列xs的前方添加x所得的新序列。
xs :+ x 由序列xs的后方追加x所得的新序列。
xs padTo (len, x) 在xs后方追加x,直到长度达到len后得到的序列。
更新  
xs patch (i, ys, r) 将xs中第i个元素开始的r个元素,替换为ys所得的序列。
xs updated (i, x) 将xs中第i个元素替换为x后所得的xs的副本。
xs(i) = x (或写作 xs.update(i, x),仅适用于可变序列)将xs序列中第i个元素修改为x。
排序  
xs.sorted 通过使用xs中元素类型的标准顺序,将xs元素进行排序后得到的新序列。
xs sortWith lt 将lt作为比较操作,并以此将xs中的元素进行排序后得到的新序列。
xs sortBy f 将序列xs的元素进行排序后得到的新序列。参与比较的两个元素各自经f函数映射后得到一个结果,通过比较它们的结果来进行排序。
反转  
xs.reverse 与xs序列元素顺序相反的一个新序列。
xs.reverseIterator 产生序列xs中元素的反序迭代器。
xs reverseMap f 以xs的相反顺序,通过f映射xs序列中的元素得到的新序列。
比较  
xs startsWith ys 测试序列xs是否以序列ys开头(存在多种形式)。
xs endsWith ys 测试序列xs是否以序列ys结束(存在多种形式)。
xs contains x 测试xs序列中是否存在一个与x相等的元素。
xs containsSlice ys 测试xs序列中是否存在一个与ys相同的连续子序列。
(xs corresponds ys)(p) 测试序列xs与序列ys中对应的元素是否满足二元的判断式p。
多集操作  
xs intersect ys 序列xs和ys的交集,并保留序列xs中的顺序。
xs diff ys 序列xs和ys的差集,并保留序列xs中的顺序。
xs union ys 并集;同xs ++ ys。
xs.distinct 不含重复元素的xs的子序列。
   

特性(trait) Seq 具有两个子特征(subtrait) LinearSeq和IndexedSeq。它们不添加任何新的操作,但都提供不同的性能特点:线性序列具有高效的 head 和 tail 操作,而索引序列具有高效的apply, length, 和 (如果可变) update操作。

常用线性序列有 scala.collection.immutable.Listscala.collection.immutable.Stream。常用索引序列有 scala.Array scala.collection.mutable.ArrayBuffer。Vector 类提供一个在索引访问和线性访问之间有趣的折中。它同时具有高效的恒定时间的索引开销,和恒定时间的线性访问开销。正因为如此,对于混合访问模式,vector是一个很好的基础。后面将详细介绍vector。

缓冲器

Buffers是可变序列一个重要的种类。它们不仅允许更新现有的元素,而且允许元素的插入、移除和在buffer尾部高效地添加新元素。buffer 支持的主要新方法有:用于在尾部添加元素的 += 和 ++=;用于在前方添加元素的+=:  ++=: ;用于插入元素的 insertinsertAll;以及用于删除元素的remove 和 -=。如下表所示。

ListBuffer和ArrayBuffer是常用的buffer实现 。顾名思义,ListBuffer依赖列表(List),支持高效地将它的元素转换成列表。而ArrayBuffer依赖数组(Array),能快速地转换成数组。

Buffer类的操作

WHAT IT IS WHAT IT DOES
加法:  
buf += x 将元素x追加到buffer,并将buf自身作为结果返回。
buf += (x, y, z) 将给定的元素追加到buffer。
buf ++= xs 将xs中的所有元素追加到buffer。
x +=: buf 将元素x添加到buffer的前方。
xs ++=: buf 将xs中的所有元素都添加到buffer的前方。
buf insert (i, x) 将元素x插入到buffer中索引为i的位置。
buf insertAll (i, xs) 将xs的所有元素都插入到buffer中索引为i的位置。
移除:  
buf -= x 将元素x从buffer中移除。
buf remove i 将buffer中索引为i的元素移除。
buf remove (i, n) 将buffer中从索引i开始的n个元素移除。
buf trimStart n 移除buffer中的前n个元素。
buf trimEnd n 移除buffer中的后n个元素。
buf.clear() 移除buffer中的所有元素。
克隆:  
buf.clone 与buf具有相同元素的新buffer。

这篇关于scala基础----序列trait:Seq、IndexedSeq及LinearSeq的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967748

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp