服务器渲染和客户端渲染:解析服务器渲染(SSR)和客户端渲染(CSR)的概念,各自的优点和缺点,并比较如Next.js, Nuxt.js等解决方案

本文主要是介绍服务器渲染和客户端渲染:解析服务器渲染(SSR)和客户端渲染(CSR)的概念,各自的优点和缺点,并比较如Next.js, Nuxt.js等解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先从概念上区分,服务器渲染(Server-side Rendering,简称 SSR)和客户端渲染(Client-side Rendering,简称 CSR)主要的区别在于页面的渲染地点不同:

  1. 服务器渲染,即 SSR,是在服务器端将数据和模板进行组装,渲染成最终的HTML页面,然后返回给客户端的浏览器,实际上用户第一次打开页面时看到的就是最终渲染的结果。

  2. 客户端渲染,即 CSR,初始时服务器返回一个基本的HTML框架和JavaScript文件,数据是通过AJAX或Fetch等技术请求获得的,然后在客户端进行页面的渲染。

他们各自有其优点和缺点:

  • SSR 的优点主要体现在:

    1. SEO 友好。对于服务器渲染的页面,搜索引擎可以直接抓取到渲染后的页面,有利于搜索引擎优化。
    2. 首屏加载快。用户可以更快地看到首屏的内容,对于用户体验非常好。
     

    SSR 的缺点:

    1. 服务器压力大。因为渲染操作在服务器端进行,服务器需要处理大量的渲染操作,消耗的资源会比客户端渲染要大。
    2. 后续的操作可能需要额外的AJAX请求。
  • CSR 的优点:

    1. 用户交互体验好。一旦页面加载完成,用户操作可以立即看到反馈,不用像SSR一样每次都需请求服务器。
    2. 服务器压力小。服务器只需要负责返回JSON数据,HTML渲染工作由客户端完成。
     

    CSR 的缺点:

    1. 不利于SEO。因为初始的HTML页面几乎没有内容,搜索引擎无法有效地分析页面信息。
    2. 首屏加载时间可能较长。受网络情况和设备性能的影响,客户端渲染页面的首屏渲染时间可能会较长。

        Next.js 和 Nuxt.js 等框架提供了一种称为同构渲染(Universal Rendering)或预渲染(Prerendering)的模式,这种模式结合了SSR和CSR两种渲染方式,兼顾了他们的优点。

        Next.js 是React的服务端渲染框架,Nuxt.js 是Vue的服务端渲染框架。他们首次渲染在服务器端完成(SSR),能够使用户快速看到页面内容,有利于SEO。之后的页面交互和切换则在客户端完成(CSR),提高了页面响应速度和用户体验,减少了服务器压力。

1、服务器渲染(SSR)

        在以下的服务器渲染的示例中,服务器会将数据 "Hello, World!" 嵌入到 HTML 中,并将其发送到客户端。

const express = require('express');
const app = express();app.get('/', (req, res) => {const response = `<html><body><h1>Hello, World!</h1></body></html>`;res.send(response);
});app.listen(3000, () => console.log('Server is running on port 3000'));

2、客户端渲染(CSR)

        在以下的客户端渲染的示例中,实际上服务器仅仅发送了一个空白的 HTML 页面和一个 JavaScript 文件。这个 JavaScript 文件会在客户端运行,获取数据,并更新 HTML。

服务器端代码:

const express = require('express');
const app = express();app.get('/', (req, res) => {const response = `<html><body><div id="app"></div><script src="/script.js"></script></body></html>`;res.send(response);
});app.get('/script.js', (req, res) => {const script = `window.onload = function() {document.getElementById('app').innerHTML = '<h1>Hello, World!</h1>';};`;res.send(script);
});app.listen(3000, () => console.log('Server is running on port 3000'));

这篇关于服务器渲染和客户端渲染:解析服务器渲染(SSR)和客户端渲染(CSR)的概念,各自的优点和缺点,并比较如Next.js, Nuxt.js等解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967428

相关文章

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱