多组间比较散点图+误差棒(自备)

2024-05-07 11:04

本文主要是介绍多组间比较散点图+误差棒(自备),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

数据

计算四分位值

作图

数据
rm(list = ls())
library(ggplot2)
library(dplyr)
library(ggpubr)
library(reshape2)
library(tidyverse)data <- iris##鸢尾花数据集
dat <- data[,c(5,1)]#单个数据进行分析
计算四分位值
#根据分组计算四分位及中位数
dat1 <- dat %>% Species_by(Species) %>% mutate(upper =  quantile(Sepal.Length, 0.75), lower = quantile(Sepal.Length, 0.25),mean = mean(Sepal.Length),median = median(Sepal.Length))
> head(dat1)
# A tibble: 6 × 6
# Groups:   Species [1]Species Sepal.Length upper lower  mean median<fct>          <dbl> <dbl> <dbl> <dbl>  <dbl>
1 setosa           5.1   5.2   4.8  5.01      5
2 setosa           4.9   5.2   4.8  5.01      5
3 setosa           4.7   5.2   4.8  5.01      5
作图
#比较分组
my_comparisons =list( c("setosa","versicolor"),c("versicolor","virginica"),c("setosa","virginica"))
P <- ggplot(dat1,aes(x=Species,y=Sepal.Length)) + #ggplot作图geom_jitter(shape = 21,aes(fill=Species),width = 0.25) + stat_summary(fun=mean, geom="point", color="grey60") +theme_cowplot() +theme(axis.text = element_text(size = 10),axis.title = element_text(size = 10),legend.text = element_text(size = 10),legend.title = element_text(size = 10),plot.title = element_text(size = 10,face = 'plain'),legend.position = 'none') + labs(title = "Species",y='Sepal.Lengthage') +geom_errorbar(aes(ymin = lower, ymax = upper),col = "grey60",width =  1)+#误差棒#差异检验stat_compare_means(comparisons=my_comparisons,label.y = c(7.5, 8, 8.5),method="t.test",#wilcox.testlabel="p.signif")
P
dev.off()

ggplot2画各种误差线和森林图 - 知乎 (zhihu.com)

R进阶绘图--散点箱线图+显著性 / 组间差异比较 / ggpubr包 - 知乎 (zhihu.com)

这篇关于多组间比较散点图+误差棒(自备)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967170

相关文章

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

C#比较两个List集合内容是否相同的几种方法

《C#比较两个List集合内容是否相同的几种方法》本文详细介绍了在C#中比较两个List集合内容是否相同的方法,包括非自定义类和自定义类的元素比较,对于非自定义类,可以使用SequenceEqual、... 目录 一、非自定义类的元素比较1. 使用 SequenceEqual 方法(顺序和内容都相等)2.

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

关键字synchronized、volatile的比较

关键字volatile是线程同步的轻量级实现,所以volatile性能肯定比synchronized要好,并且volatile只能修饰于变量,而synchronized可以修饰方法,以及代码块。随着JDK新版本的发布,synchronized关键字的执行效率上得到很大提升,在开发中使用synchronized关键字的比率还是比较大的。多线程访问volatile不会发生阻塞,而synchronize

单位权中误差 详细介绍

单位权中误差(Unit Weight Error, UWE)是用于描述测量数据不确定性的一个统计量,特别是在地理信息系统(GIS)、导航和定位系统中。它主要用于评估和比较不同测量系统或算法的精度。以下是对单位权中误差的详细介绍: 1. 基本概念 单位权中误差(UWE): 定义:单位权中误差表示每个观测值(测量值)在估算中的标准误差。它是误差的一个统计量,主要用于评估测量系统的精度。单位:通常

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假

stl的sort和手写快排的运行效率哪个比较高?

STL的sort必然要比你自己写的快排要快,因为你自己手写一个这么复杂的sort,那就太闲了。STL的sort是尽量让复杂度维持在O(N log N)的,因此就有了各种的Hybrid sort algorithm。 题主你提到的先quicksort到一定深度之后就转为heapsort,这种是introsort。 每种STL实现使用的算法各有不同,GNU Standard C++ Lib

研究生生涯中一些比较重要的网址

Mali GPU相关: 1.http://malideveloper.arm.com/resources/sdks/opengl-es-sdk-for-linux/ 2.http://malideveloper.arm.com/resources/tools/arm-development-studio-5/ 3.https://www.khronos.org/opengles/sdk/do