【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】

本文主要是介绍【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【学习AI-相关路程-工具使用-自我学习-cuda&visco-开发工具尝试-基础样例 (2)】

  • 1、前言
  • 2、环境说明
  • 3、总结说明
  • 4、工具安装
      • 0、验证cuda
      • 1、软件下载
      • 2、插件安装
  • 5、软件设置与编程练习
      • 1、创建目录
      • 2、编译软件进入目录&创建两个文件
      • 3、编写配置文件
      • 5、编写代码文件
      • 6、调试&验证
      • 7、代码解读
          • (1)包含头文件和定义CUDA内核
          • (2)主函数内的变量定义和内存分配
          • (3)初始化向量并复制到设备
          • (4)内核调用
          • (5)检查错误和回复结果
          • (6)验证结果
          • (7)清理内存
  • 6、代码链接
  • 7、细节部分
      • 1、问题1:一个错误
      • 2、问题:使用命令nvidia-smi,无法调出如下信息。
      • 3、Tasks:configure tasks,自动创建tasks.json
  • 8、总结

1、前言

我们之前安装了cuda,但是我们其实是无法直接使用cuda的,还需要编译器,类似前端,供我们输入代码,好让我们可以将思想延伸。

同时也本篇,也是续写上一篇,我们将在本篇安装开发工具,来写一个简单dome,调用cuda平台相关套件,相当hello world。

前文链接:【学习AI-相关路程-工具使用-自我学习-NVIDIA-cuda-工具安装 (1)】

2、环境说明

这里准备安装Visual Studio code 这个工具,可以看到,只用这个工具是支持不同系统的,visual studio,只是支持win下。

下载链接:https://visualstudio.microsoft.com/zh-hans/

在这里插入图片描述

当然如果使用运行cuda,还可以使用Python 语言,是使用另一个工具,目前自己刚学到这里,以后要是学了再写文章。

3、总结说明

(1)了解Visual Studio code
一般来说,想编写程序的话,或多或少,都会了解到这个工具,即使没用过,也会听过。更多的可以看文档。
链接文档:https://code.visualstudio.com/docs
在这里插入图片描述
如果因为不太好,可以选择一些翻译工具。

(2)装插件和cuda
安装好了编译工具后,就是安装插件工具,因为Visual Studio code本身支持很多,不是一起全部安装的,需要根据自己需求灵活选。

(3)练习代码
最后就是练习一下代码,调用对库,在编译好的软件,运行过程中,就是在使用GPU了。我们通过这个简单样例,来熟悉一下一些库。

4、工具安装

0、验证cuda

使用其他工具前,先要验证下,自己是否已经支持了cuda,或者说是否已经安装了cuda。

nvcc -V
或者
nvcc --version

一般来说安装好后,会出现如下信息。
在这里插入图片描述

1、软件下载

如下链接,选择一个自己合适的版本。

下载链接:https://visualstudio.microsoft.com/zh-hans/#vscode-section

在这里插入图片描述
安装命令:

sudo dpkg -i code_1.89.0-1714530869_amd64.deb

2、插件安装

如下图,我这里编写c/c++语言和cuda,一搜基本就会出来。
在这里插入图片描述

如下是我自己的选择的插件
在这里插入图片描述

5、软件设置与编程练习

1、创建目录

我们先在桌面创建一个文件夹,自己自己定就好,不必和我一致。

在这里插入图片描述

2、编译软件进入目录&创建两个文件

我们用Visual Studio code软件进入对应目录,然后创建两个文件。之后就是准备编写内容了。
在这里插入图片描述

3、编写配置文件

配置文件,顾名思义,就是告诉编译器,去哪里找工具,使用什么工具编译等等配置信息的文件。

{"version": "2.0.0","tasks": [{"label": "Build CUDA project","type": "shell","command": "/usr/local/cuda/bin/nvcc","args": ["-arch=sm_35", // 根据你的GPU架构适当修改"${file}","-o","${fileDirname}/${fileBasenameNoExtension}.out"],"group": {"kind": "build","isDefault": true},"problemMatcher": "$gcc"}]
}

如下为截图。
在这里插入图片描述

5、编写代码文件

代码文件,就是我们实际要编写代码的文件,也是我们想法延伸。

#include <stdio.h>// CUDA Kernel for Vector Addition
__global__ void vecAdd(float *A, float *B, float *C, int N) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < N) {C[i] = A[i] + B[i];}
}int main() {int N = 1024; // Size of vectorsfloat *h_A, *h_B, *h_C; // Host vectorsfloat *d_A, *d_B, *d_C; // Device vectors// Allocate memory on hosth_A = (float *)malloc(N * sizeof(float));h_B = (float *)malloc(N * sizeof(float));h_C = (float *)malloc(N * sizeof(float));// Initialize host vectorsfor (int i = 0; i < N; i++) {h_A[i] = i;h_B[i] = i * 2;}// Allocate memory on devicecudaMalloc(&d_A, N * sizeof(float));cudaMalloc(&d_B, N * sizeof(float));cudaMalloc(&d_C, N * sizeof(float));// Copy host vectors to devicecudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);// Kernel launchint threadsPerBlock = 256;int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;vecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);// Check for any errors launching the kernelcudaError_t err = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to launch vecAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy result back to hostcudaMemcpy(h_C, d_C, N * sizeof(float), cudaMemcpyDeviceToHost);// Check for any errors after the kernel launcherr = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to copy vector C from device after kernel execution (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Verify resultsbool success = true;for (int i = 0; i < N; i++) {if (h_C[i] != h_A[i] + h_B[i]) {printf("Error at position %d\n", i);success = false;break;}}if (success) {printf("Vector addition successful!\n");}// Free memoryfree(h_A);free(h_B);free(h_C);cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);return 0;
}

以下为截图
在这里插入图片描述

6、调试&验证

自己在调试

(1)调试
在这里插入图片描述

(2)成功
在这里插入图片描述

7、代码解读

本代码是在网上找到一个样例,是一个使用CUDA进行向量加法的简单例子。

简单理解下,以后看多了大概就明白了。

(1)包含头文件和定义CUDA内核
#include <stdio.h>// CUDA Kernel for Vector Addition
__global__ void vecAdd(float *A, float *B, float *C, int N) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < N) {C[i] = A[i] + B[i];}
}
(2)主函数内的变量定义和内存分配
int main() {int N = 1024; // Size of vectorsfloat *h_A, *h_B, *h_C; // Host vectorsfloat *d_A, *d_B, *d_C; // Device vectorsh_A = (float *)malloc(N * sizeof(float));h_B = (float *)malloc(N * sizeof(float));h_C = (float *)malloc(N * sizeof(float));cudaMalloc(&d_A, N * sizeof(float));cudaMalloc(&d_B, N * sizeof(float));cudaMalloc(&d_C, N * sizeof(float));
(3)初始化向量并复制到设备
    for (int i = 0; i < N; i++) {h_A[i] = i;h_B[i] = i * 2;}cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);
(4)内核调用
    int threadsPerBlock = 256;int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;vecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
(5)检查错误和回复结果
    cudaError_t err = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to launch vecAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}cudaMemcpy(h_C, d_C, N * sizeof(float), cudaMemcpyDeviceToHost);
(6)验证结果
    bool success = true;for (int i = 0; i < N; i++) {if (h_C[i] != h_A[i] + h_B[i]) {printf("Error at position %d\n", i);success = false;break;}}if (success) {printf("Vector addition successful!\n");}
(7)清理内存
    free(h_A);free(h_B);free(h_C);cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);

6、代码链接

代码链接:https://download.csdn.net/download/qq_22146161/89273073

7、细节部分

1、问题1:一个错误

具体什么错误有点记不清了,这里记录下吧。
在这里插入图片描述

2、问题:使用命令nvidia-smi,无法调出如下信息。

在这里插入图片描述
如上图,自己在安装过程中,突然发现nvidia-smi命令,因为一直安装各种东西,应该是影响到了,不反馈信息,后重启解决了

3、Tasks:configure tasks,自动创建tasks.json

稍微有点时间,不过我没记错的话,使用 查看>>命令面板,可以直接创建这个tasks.json文件。
在这里插入图片描述
如下步骤

在这里插入图片描述
在这里插入图片描述

8、总结

很多时候,其实是无法理解每一步,只有常看,才能大致记住,更多调试,后续也会慢慢学习。

这篇关于【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966204

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字