STM32单片机实战开发笔记-I2C通讯总线【wulianjishu666】

本文主要是介绍STM32单片机实战开发笔记-I2C通讯总线【wulianjishu666】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

嵌入式单片机开发实战例程合集:

链接:https://pan.baidu.com/s/11av8rV45dtHO0EHf8e_Q0Q?pwd=28ab
提取码:28ab

I2C模块测试

  1. 功能描述

I2C总线接口连接微控制器和串行I2C总线。它提供多主机功能,控制所有I2C总线特定的时序,协议,仲裁和定时。支持标准和快速两种模式,同时与SMBus 2.0兼容.

  1. 主要特性
  1. 并行总线/I2C总线协议转换器
  2. 多主机功能:同一接口即可做主设备也可做从设备
  3. I2C主设备功能
  • 产生时钟
  • 产生起始和停止信号
  1. I2C从设备功能
  • 可编程的I2C地址检测
  • 可响应2个从地址的双地址能力
  • 停止位检测
  1. 产生和检测7位/10位地址和广播呼叫
  2. 支持不同的通讯速度
  • 标准速度(高至100KHZ)
  • 快速(高至400KHZ)
  1. 状态标志
  • 发送器/接收器模式标志
  • 字节发送结束标志
  • I2C总线忙标志
  1. 错误标志
  • 主模式时的时钟丢失
  • 地址/数据传输后的应答(ACK)错误
  • 检测到起始和停止错位
  • 禁止拉长时钟功能后的上溢或下溢
  1. 2个中断向量
  • 1个中断用于地址/数据通讯成功
  • 1个中断用于出错
  1. 可选的拉长时钟功能
  2. 具单字节缓冲器的DMA
  1. 通信过程

主模式时,I2C接口启动数据传输并产生时钟信号。串行数据传输总是以起始条件开始和停止条件结束。主模式时,由软件控制产生起始条件和停止条件。

从模式时,I2C接口能识别它自己的地址(7位或10位)和广播呼叫地址。软件控制开启或禁止广播呼叫地址的识别。

数据和地址按8位/字节进行传输,高位在前。跟在起始条件后面的第一,二个字节是地址(7位模式为1个字节,10位模式为2个字节)。地址只在主模式发送。

在一个字节传输的8个时钟后的第9个时钟期间,接收器必须回送一个应答位(ACK)给发生器。

  1. EEPROM

CAT24WC16是CATALYST公司生产的串行电可擦除的可编程存储器。其内部共有128页,每一页为16字节,每一字节为8位。CAT24WC16以一个字节为一个存储单元,共有2K个存储单元。因此任一存储单元的地址为11位(A0~A11),地址范围为0x00~0x7FF(2K地址范围)。

CAT24WC16的特性如下:

  1. 1.8~6.0V工作电压范围。
  2. 存储容量为16KB.
  3. 16字节页写缓冲器。
  4. 与400KHZ的I2C总线兼容。
  5. 符合双向数据传输协议。
  6. 数据保存时间长达100年,具有硬件写保护和软件数据保护功能
  7. 自动定时擦写周期

引脚说明:

引脚名称

功能

功能描述

VCC GND

电源,地

为芯片提供3.3V电源

A0 A1 A2

地址选择

在串行总线结构中,最多可以连接8个CAT24WC16芯片,则用A0,A1,A2设置地址以示区别 A0 A1 A2 悬空为0

WP

写保护

此引脚接地允许写操作,接VCC被禁止

SCL

时钟线

串行时钟输入

SDA

数据线

双向串行数据输入/输出

5、硬件电路

  1. 软件代码

/********************************************************************

* 说明 :通过I2C总线实现对EEPROM的读写操作

/*******************************************************************

本实验使用CAT24WC16:

        CAT24WC16是CATALSYT公司生产的串行电可擦除的可编程存储器。其内部共有128页,每一页

为16字节,每一个字节8位。CAT24WC16以一个字节为一个存储单元,共有2K个存储单元。因此任一

存储单位地址为11位(A0~A11),地址范围为0x00~0x7FF(2K地址范围)。

*******************************************************************/

#include"stm32f10x_lib.h"

#include"IIC.h"

#define EEPROM_ADDRESS      0xA0

#define      I2C2_SLAVE_ADDRESS7  0xA0

#define I2C_Speed      200000

#define I2C_PageSize  16

void I2C_Configuration(void)

{

        GPIO_InitTypeDef      GPIO_InitStructure;

        I2C_InitTypeDef I2C_InitStructure;

       RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB , ENABLE);

       RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);

        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;

        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;

        GPIO_Init(GPIOB,&GPIO_InitStructure);

        /*  I2C Configuration */

        I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;      //设置I2C为I2C模式

        I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;    //I2C快速模式

        I2C_InitStructure.I2C_OwnAddress1 = I2C2_SLAVE_ADDRESS7;

        I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;      //使能应答

        I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;

        I2C_InitStructure.I2C_ClockSpeed = I2C_Speed;

        /*   I2C Peripheral Enable*/

        I2C_Cmd(I2C2,ENABLE);

        I2C_Init(I2C2,&I2C_InitStructure);

}

void I2C2_Init(void)

{

        I2C_Configuration();  

}

void I2C_ByteWrite(u8 *pBuffer,u8 WriteAddr)

{      

        I2C_WaitEepromStandbyState();                                                

        /* [1]Send Start Condition  发送起始信号*/

        I2C_GenerateSTART(I2C2,ENABLE);

        /* [2]Test On EV5 and clear it  起始信号已发送并清除该事件 */

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT));

        /* [3]Send EEPROM address for write  发送器件地址*/

        I2C_Send7bitAddress(I2C2,EEPROM_ADDRESS,I2C_Direction_Transmitter);

        /* [4]Test on Ev6 and clear it 地址发送结束 */

while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));

        /* [5]Send EEPROM's internal address to  write 发送器件内部写入地址 */

        I2C_SendData(I2C2,WriteAddr);

        /* [6]Test on EV8 _1 and clear it 移位寄存器空 */

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

        /* [7]Send the byte to be writeen 发送数据*/

        I2C_SendData(I2C2,*pBuffer);

        /* [8]Test on EV8 and clear it 发送缓冲区空*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

        /* [9]Send STOP condition 发送停止信号 */

        I2C_GenerateSTOP(I2C2,ENABLE);

}

void I2C_PageWrite(u8 *pBuffer,u8 WriteAddr,u8 NumByteToWrite)

{

        I2C_WaitEepromStandbyState();

        /*[1]Send START condition 发送起始条件*/

        I2C_GenerateSTART(I2C2,ENABLE);

        /*[2]Test on EV5 and clear it 起始信号发送是否成功*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT));

        /*[3]Send EEPROM address for write 发送器件地址*/

        I2C_Send7bitAddress(I2C2,EEPROM_ADDRESS,I2C_Direction_Transmitter);

        /*[4]Test on EV6 and clear it  发送器件地址是否成功*/

while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));

        /*[5]Send EEPROM'S internal address to write to 发送数据的写入首地址*/

        I2C_SendData(I2C2,WriteAddr);

                

        /*[6]Test on EV8 and clear it  发送内部地址是否成功*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

        /*[7]Send data to Written 发送数据*/

          while(NumByteToWrite--)

           {

                       /*Send the current byte 发送当前一个字节*/

                       I2C_SendData(I2C2,*pBuffer);

                        /* Point to the next byte to be written 地址++*/

                          pBuffer++;

                         /*Test on EV8 and clear it 发送缓冲区是否为空*/                                     while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

          }

        /*[8]Send STOP condition 发送停止信号*/

        I2C_GenerateSTOP(I2C2,ENABLE);

}

 void I2C_BufferWrite(u8 *pBuffer,u8 WriteAddr,u16 NumByteToWrite)

 {

        u8 NumOfPage = 0, NumOfSingle = 0, Addr = 0, count = 0;

       Addr = WriteAddr % I2C_PageSize;

       count = I2C_PageSize - Addr;

       NumOfPage =  NumByteToWrite / I2C_PageSize;

       NumOfSingle = NumByteToWrite % I2C_PageSize;

        I2C_WaitEepromStandbyState();

  /* If WriteAddr is I2C_PageSize aligned  */

  if(Addr == 0)

  {

    /* If NumByteToWrite < I2C_PageSize */

    if(NumOfPage == 0)

    {

      I2C_PageWrite(pBuffer, WriteAddr, NumOfSingle);

      I2C_WaitEepromStandbyState();

    }

    /* If NumByteToWrite > I2C_PageSize */

    else 

    {

      while(NumOfPage--)

      {

        I2C_PageWrite(pBuffer, WriteAddr, I2C_PageSize);

    I2C_WaitEepromStandbyState();

        WriteAddr +=  I2C_PageSize;

        pBuffer += I2C_PageSize;

      }

      if(NumOfSingle!=0)

      {

        I2C_PageWrite(pBuffer, WriteAddr, NumOfSingle);

        I2C_WaitEepromStandbyState();

      }

    }

  }

  /* If WriteAddr is not I2C_PageSize aligned  */

  else

  {

    /* If NumByteToWrite < I2C_PageSize */

    if(NumOfPage== 0)

    {

      I2C_PageWrite(pBuffer, WriteAddr, NumOfSingle);

      I2C_WaitEepromStandbyState();

    }

    /* If NumByteToWrite > I2C_PageSize */

    else

    {

      NumByteToWrite -= count;

      NumOfPage =  NumByteToWrite / I2C_PageSize;

      NumOfSingle = NumByteToWrite % I2C_PageSize;     

     

      if(count != 0)

      { 

        I2C_PageWrite(pBuffer, WriteAddr, count);

        I2C_WaitEepromStandbyState();

        WriteAddr += count;

        pBuffer += count;

      }

     

      while(NumOfPage--)

      {

        I2C_PageWrite(pBuffer, WriteAddr, I2C_PageSize);

        I2C_WaitEepromStandbyState();

        WriteAddr +=  I2C_PageSize;

        pBuffer += I2C_PageSize; 

      }

      if(NumOfSingle != 0)

      {

        I2C_PageWrite(pBuffer, WriteAddr, NumOfSingle);

        I2C_WaitEepromStandbyState();

      }

    }

  }         

 }

void I2C_WaitEepromStandbyState(void)

{

        vu16 SR1_Tmp = 0;

  do

  {

    /* Send START condition */

    I2C_GenerateSTART(I2C2, ENABLE);

    /* Read I2C1 SR1 register */

    SR1_Tmp = I2C_ReadRegister(I2C2, I2C_Register_SR1);

    /* Send EEPROM address for write */

    I2C_Send7bitAddress(I2C2, EEPROM_ADDRESS, I2C_Direction_Transmitter);

  }while(!(I2C_ReadRegister(I2C2, I2C_Register_SR1) & 0x0002));

 

  /* Clear AF flag */

  I2C_ClearFlag(I2C2, I2C_FLAG_AF);      

}

void I2C_BufferRead(u8 *pBuffer,u8 ReadAddr,u16 NumByteToRead)

{

        I2C_WaitEepromStandbyState();

        /*Send START Condition 发送起始信号*/

        I2C_GenerateSTART(I2C2,ENABLE);

        /*Test on EV5 and clear it 检测起始信号是否发送成功*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT));

        /* In the case of a singel data transfer disable ACK before readint the data*/

        if(NumByteToRead==1)

        {

                 I2C_AcknowledgeConfig(I2C2,DISABLE);//如果NumByteToRead则不需1字节一应答

        }

        /*Send EEPROM ADDRESS for write */

        I2C_Send7bitAddress(I2C2,EEPROM_ADDRESS,I2C_Direction_Transmitter);

        /* Test on EV6 and clear it*/

while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));

        /* Enable I2C*/

        I2C_Cmd(I2C2,ENABLE);

        /* Send EEPROM'S internal address to write to*/

        I2C_SendData(I2C2,ReadAddr);

        /*Test on EV8 and clear it*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

        /*Send START condition again*/

        I2C_GenerateSTART(I2C2,ENABLE);

        /*Test on EV5 and clear it*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT));

        /*Send EEPROM address for read*/

        I2C_Send7bitAddress(I2C2,EEPROM_ADDRESS,I2C_Direction_Receiver);

        /*Test on EV6 and clear it*/

while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED));

    /*Read Data*/

        while(NumByteToRead)

        {

                 /*Test on EV7 and clear it*/

                 if(I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_RECEIVED))

                 {

                         if(NumByteToRead == 2)                             

                         {

                                  /*Disable Acknowledgement*/

                                  I2C_AcknowledgeConfig(I2C2,DISABLE);   //一般在最后一个字节关闭应答

                         }

                         if(NumByteToRead == 1)

                         {

                                  /*Send STOP condition */  //最后一位要关闭应答,发送停止信号

                                  I2C_GenerateSTOP(I2C2,ENABLE);

                         }

                         /*Read a byte from the EEPROM*/

                         *pBuffer = I2C_ReceiveData(I2C2);

                         /*Point to the next location where the byte read will be saved*/

                         pBuffer++;

                         /*Decrement the read bytes counter*/

                         NumByteToRead--;

                 }

        }

        /*Enable Acknowledgement to be ready for anotherreception*/

   I2C_AcknowledgeConfig(I2C2,ENABLE);                //允许再次应答           

}

这篇关于STM32单片机实战开发笔记-I2C通讯总线【wulianjishu666】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965163

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

基于Python开发一个有趣的工作时长计算器

《基于Python开发一个有趣的工作时长计算器》随着远程办公和弹性工作制的兴起,个人及团队对于工作时长的准确统计需求日益增长,本文将使用Python和PyQt5打造一个工作时长计算器,感兴趣的小伙伴可... 目录概述功能介绍界面展示php软件使用步骤说明代码详解1.窗口初始化与布局2.工作时长计算核心逻辑3

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

如何基于Python开发一个微信自动化工具

《如何基于Python开发一个微信自动化工具》在当今数字化办公场景中,自动化工具已成为提升工作效率的利器,本文将深入剖析一个基于Python的微信自动化工具开发全过程,有需要的小伙伴可以了解下... 目录概述功能全景1. 核心功能模块2. 特色功能效果展示1. 主界面概览2. 定时任务配置3. 操作日志演示