springAI框架学习总结

2024-05-06 10:20
文章标签 学习 总结 框架 springai

本文主要是介绍springAI框架学习总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

springAI

1.springAI基本介绍

springAI是一个AI工程应用框架,其目标是将 Spring 生态系统设计原则(例如可移植性和模块化设计)应用于 AI 领域,并推广使用 POJO 作为 AI 领域应用程序的构建块。

2.特性

灵活的AIP支持chat,text-to-image, and Embedding models。支持同步和stream API。向下可以接入特定的模型。

Chat Models

  • OpenAI

  • Azure Open AI

  • Amazon Bedrock

    • Cohere's Command

    • AI21 Labs' Jurassic-2

    • Meta's LLama 2

    • Amazon's Titan

  • Google Vertex AI Palm

  • Google Gemini

  • HuggingFace - access thousands of models, including those from Meta such as Llama2

  • Ollama - run AI models on your local machine

  • MistralAI

Text-to-image Models

  • OpenAI with DALL-E

  • StabilityAI

Transcription (audio to text) Models

  • OpenAI

Embedding Models

  • OpenAI

  • Azure OpenAI

  • Ollama

  • ONNX

  • PostgresML

  • Bedrock Cohere

  • Bedrock Titan

  • Google VertexAI

  • Mistal AI

灵活的提供了多个厂商的向量存储API.

Vector Databases

  • Azure Vector Search

  • Chroma

  • Milvus

  • Neo4j

  • PostgreSQL/PGVector

  • PineCone

  • Redis

  • Weaviate

  • Qdrant

为 AI Models and Vector Stores提供了Spring Boot Auto Configuration and Starters .

支持以下模型:

  • OpenAI

  • Azure OpenAI

  • VertexAI

  • Mistral AI

支持的模型供应商:

  • OpenAI

  • Microsoft,

  • Amazon,

  • Google

  • and Huggingface

提供数据工程ETL框架:

  • 核心功能是促进使用向量存储将文档传输到模型提供者。 ETL 框架基于 Java 函数式编程概念,可帮助您将多个步骤链接在一起。

  • 支持读取各种格式的文档,包括 PDF、JSON 等。

  • 允许进行数据操作以满足需求。涉及分割文档以遵守上下文窗口限制,并使用关键字增强其以提高文档检索效率。

  • 处理后的文档存储在矢量数据库中,以便将来检索。

https://github.com/open-webui/open-webui

058 Docker运行Open WebUI拉取镜像_哔哩哔哩_bilibili

3.springAI框架使用搭建

参考文档:

Installation :: Spring Cli

Spring AI

Spring AI :: Spring AI Reference

Getting Started :: Spring AI Reference

Spring AI 中的类:

  • DocumentReader:一个 Java 功能接口,负责从数据源加载 List<Document>。 常见的数据源有 PDF、Markdown 和 JSON。

  • Document:数据源的基于文本的表示形式,还包含用于描述内容的元数据。

  • DocumentTransformer:负责以各种方式处理数据(例如,将文档分割成更小的部分或向文档添加额外的元数据)。

  • DocumentWriter:允许您将文档保存到数据库中(最常见的是在 AI 堆栈中,矢量数据库)。

  • Embedding:将数据表示为 List<Double>,矢量数据库使用它来计算用户查询与相关文档的“相似度”。

在矢量数据库中,查询与传统的关系数据库不同。 他们执行相似性搜索,而不是精确匹配。 当给定向量作为查询时,向量数据库返回与查询向量“相似”的向量。 矢量数据库用于将您的数据与 AI 模型集成。 使用它们的第一步是将数据加载到矢量数据库中。 然后,当用户查询要发送到人工智能模型时,首先检索一组相似的文档。 然后,这些文档将作为用户问题的上下文,并与用户的查询一起发送到人工智能模型。 该技术称为检索增强生成(RAG)。

评估AI模型响应 : 一种方法涉及呈现用户的请求和人工智能模型对模型的响应,查询响应是否与提供的数据一致。

利用矢量数据库中存储的信息作为补充数据可以增强评估过程,有助于确定响应相关性。

Spring AI 项目当前提供了一些非常基本的示例,说明如何以提示的形式评估响应以包含在 JUnit 测试中。

step1 下载安装spring cli工具 https://github.com/spring-projects/spring-cli/releases

step2.创建myai工程

spring boot new --from ai --name myai

step3.创建openAI账户,获取api key并配置其于项目工程

获取apikey

https://platform.openai.com/api-keys

New API

配置api key

step4.运行myai工程

step5.访问工程:

curl localhost:8080/ai/simple

参考代码:https://github.com/rd-1-2022/ai-openai-helloworld/tree/main

注意:可能因为网络无法访问,需自行解决

Spring AI整合OpenAI和Ollama本地大模型_哔哩哔哩_bilibili

ollama

   4. springAI API

  • chat completion API(openAI/Ollama/huggingface/google vertexAI)

  • Embeddings API (openAI/ollama/google vertexAI/Transformer(ONNX)) EmbeddingClient 界面旨在与 AI 和机器学习中的嵌入模型直接集成。 其主要功能是将文本转换为数值向量,通常称为嵌入。 这些嵌入对于语义分析和文本分类等各种任务至关重要。

    EmbeddingClient 界面的设计围绕两个主要目标:

    可移植性:该接口确保了跨各种嵌入模型的轻松适应性。 它允许开发人员以最少的代码更改在不同的嵌入技术或模型之间切换。 这种设计符合 Spring 的模块化和可互换性理念。

    简单性:EmbeddingClient 简化了将文本转换为嵌入的过程。 通过提供 embed(String text) 和 embed(Document document) 等简单方法,它消除了处理原始文本数据和嵌入算法的复杂性。 这种设计选择使开发人员(尤其是刚接触 AI 的开发人员)能够更轻松地在应用程序中利用嵌入,而无需深入研究底层机制。

  • image generation api(openAI/stability)

  • transcription API (openAI)

  • vector databases(Neo4j/PGvector/Redis);

  • Function Calling

    大型语言模型(LLM)在训练后被冻结,导致知识过时,并且无法访问或修改外部数据。

    Function Calling 机制解决了知识过时问题,允许注册自定义用户函数,将大型语言模型连接到外部系统的 API。 这些系统可以为llm提供实时数据并代表他们执行数据处理操作。

  • Multimodality API(多模态 api) 多模态是指模型同时理解和处理多种类型模式的的信息数据能力,包括:文本、图像、音频;

    多模式大语言模型(LLM)特征使模型能够结合其他模态(图像、音频、视频)来处理和生成文本响应;

    springAI多模态API提供了所有必要的统一抽象和代码封装来支持多模态LLM

  • Prompts

    角色: system Role /User Role/ Assitant Role/Function Role

    提示技术:

    • Text Summarization: 文本总结

    • Question Answering: 问题问答

    • Text Classification: 文本分类

    • Conversation: 交互式自然对话

    • Code Generation: 代码生成

    高级技术:

    • Zero-shot, Few-shot Learning(零样本,少样本学习): 使模型能够通过最少甚至没有特定问题类型的先前示例做出准确的预测或响应,使用学习到的概括来理解新任务并采取行动。

    • Chain-of-Thought(链式思维): 将多个人工智能响应链接起来,创建连贯且上下文相关的对话。 它帮助人工智能保持讨论的主线,确保相关性和连续性。

    • ReAct (Reason + Act): 这种方法中,人工智能首先分析输入(推理),然后确定最合适的行动或响应方案。 它将理解与决策结合起来。

  • 输出解析(Output Parsers)

    OutputParser 接口允许您获取结构化输出,例如将输出映射到 Java 类或 AI 模型基于字符串的输出的值数组。

output Parser接口实现:BeanOutputParser(java bean 与json)、MapOutputParser(json转map)、ListOutputParser(输出为逗号分隔的list)

  • ETL Pipeline

    Extract,Transform,Load->ETL

    Retrieval Augmented Generation (RAG):检索增强生成

    ETL 框架充当检索增强生成 (RAG) 用例中数据处理的支柱。

    ETL 管道编排从原始数据源到结构化向量存储的流向,确保数据采用最佳格式供 AI 模型检索。

    RAG 用例是文本,通过从数据体中检索相关信息来增强生成模型的功能,从而提高生成输出的质量和相关性。

    ETL pipeline的三个主要组件:

    • DocumentReader 实现了 Supplier<List<Document>>接口

    • DocumentTransformer 实现了 Function<List<Document>, List<Document>>接口

    • DocumentWriter 实现了Consumer<List<Document>>接口 Document 类包含文本和元数据,是通过 DocumentReader 从 PDF、文本文件和其他文档类型创建的。

      ETL 类型:

      • PagePdfDocumentReader 实现了 DocumentReader

      • TokenTextSplitter 实现了 DocumentTransformer

      • VectorStore 接口of DocumentWriter接口

      将数据基本加载到向量数据库中以与检索增强生成(RAG)模式一起使用,代码如下: vectorStore.accept(tokenTextSplitter.apply(pdfReader.get()));

  • 测试评估(evaluation testing)

  • 通用模型api(Generic Model API)

    为了给所有 AI 模型客户端提供基础,创建了通用模型 API。 这使得通过遵循通用模式可以轻松地为 Spring AI 提供新的 AI 模型支持。 以下部分为此 API介绍:

这篇关于springAI框架学习总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964112

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

解决若依微服务框架启动报错的问题

《解决若依微服务框架启动报错的问题》Invalidboundstatement错误通常由MyBatis映射文件未正确加载或Nacos配置未读取导致,需检查XML的namespace与方法ID是否匹配,... 目录ruoyi-system模块报错报错详情nacos文件目录总结ruoyi-systnGLNYpe

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1