二维托盘装载问题的建模与求解

2024-05-06 05:36

本文主要是介绍二维托盘装载问题的建模与求解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题简介

二维托盘装载问题是托盘装载问题的一个特殊情况,它仅考虑了长度和宽度两个维度,忽略了高度这一维度,因此也被称为二维装箱问题(2D Bin Packing Problem)。该问题的目标是将一组不同长度和宽度的矩形箱子,无重叠地装载到一个固定大小的矩形托盘上,使得托盘的利用面积最大化,如下图所示为一个托盘装载问题的示意图。
托盘装载问题示例
通常而言,托盘装载问题主要包含以下约束:
(1)托盘的长宽固定
(2)箱子的长宽固定
(3)箱子之间不允许重叠
(4)所有箱子必须在托盘区域内
(5)箱子可以根据需要旋转90度

托盘装载问题的优化目标通常为最大化托盘利用面积,即装载后剩余的空余面积最小,相比三维托盘装载问题,二维版本忽略了高度这一维度的约束,问题的复杂度有所降低,但仍然属于NP难问题。常用的解决方法包括:

近似算法
(1)近似比分数算法 (APFA)
(2)最坏情况比率算法 (WSCRA)

启发式算法
(1)下一适合位置算法 (NFFA)
(2)最大空隙度算法 (LGA)

元启发式算法
(1)遗传算法
(2)模拟退火算法
(3)蚁群算法等

精确算法
(1)枚举法
(2)线性规划法等

二维托盘装载问题虽然是一个理论化简的模型,但也有现实应用场景,例如多层板条箱装载问题,纸板、木板、金属板等装载最优化,仓库地面区域规划与划分,集装箱货物装载优化等,本文首先对该问题进行建模,然后采用线性规划方法对该问题进行求解,受限于问题的复杂度,该方法仅适用于小规模的求解。

二、模型搭建

2.1 符号定义

符号定义

2.2 数学模型

请添加图片描述

其中:
式(0)最大化装载箱子数量;
式(1)保证对于放置在托盘上的每个箱子互不重叠;
式(3)-(4)对变量类型进行约束。
稍微需要注意的是约束(1),两个箱子的边界是可以重合的,因此托盘上所有点都最多有一个箱子覆盖这样的描述是不成立的。

三、核心代码

3.1 求解代码
#求解器
model=Model('pallet loading')x,y=dict(),dict()
for i in lp:for j in wp:x[(i,j)]=model.addVar(vtype='B',name='x[{}][{}]'.format(i,j))y[(i,j)]=model.addVar(vtype='B',name='y[{}][{}]'.format(i,j))#目标函数
obj=0
for i in lp:for j in wp:if i+a<=L and j+b<=W:obj+=x[(i,j)]if i+b<=L and j+a<=W:obj+=y[(i,j)]
model.setObjective(obj,sense='maximize')#坐标点s和r
for r in range(L):for s in range(W):expr=0for i in lp:for j in wp:if (i<=r and i+a>r) and (j<=s and j+b>s) and i+a<=L and j+b<=W:expr+=x[(i,j)]if (i<=r and i+b>r) and (j<=s and j+a>s) and i+b<=L and j+a<=W:expr+=y[(i,j)]if expr:model.addCons(expr<=1,name='({},{})'.format(r,s))#求解
model.optimize()
3.2 可视化代码
def plot_box(points,puts,L,W):separate=10colors = ['#00FFFF','#7FFFD4','#000000','#0000FF','#8A2BE2','#A52A2A','#DEB887','#5F9EA0','#7FFF00','#D2691E','#FF7F50','#6495ED','#DC143C','#00FFFF','#00008B','#008B8B','#B8860B','#A9A9A9','#006400','#BDB76B']plt.figure(figsize=[20,20*W/L])plt.xlim(0,L)plt.ylim(0,W)num=len(points)for i in range(num):point=points[i]put=puts[i]if put=='x':for l in range(b*separate+1):plt.plot([point[0]+i for i in range(a+1)],[point[1]+l/separate for i in range(a+1)],color=colors[i%len(colors)])plt.plot([point[0] for i in range(b+1)],[point[1]+i for i in range(b+1)],color=colors[i%len(colors)])plt.plot([point[0]+a for i in range(b+1)],[point[1]+i for i in range(b+1)],color=colors[i%len(colors)])if put=='y':plt.plot([point[0]+i for i in range(b+1)],[point[1] for i in range(b+1)],color=colors[i%len(colors)])plt.plot([point[0]+i for i in range(b+1)],[point[1]+a for i in range(b+1)],color=colors[i%len(colors)])for w in range((b)*separate):plt.plot([point[0]+w/separate for i in range(a+1)],[point[1]+i for i in range(a+1)],color=colors[i%len(colors)])

四、测试结果

在这一小节中,用两个case来验证本文算法的有效性,第一个case规模较小,第二个case规模较大,求解时间较长,基本临近线性规划的求解极限。

4.1 简单case

在长宽分别为11、10的托盘中,放置长宽分别为4、3的箱子,最多放置的箱子数量为9,放置结果如下图所示。
简单case

4.2 复杂case

在长宽分别为200、100的托盘中,放置长宽分别为15,10的箱子,最多放置的箱子数量为133,放置结果如下图所示。
复杂case
对于第二个case,直接求解其实还是比较有难度,为了加速求解,对可放置点进行了稀疏处理,理论上托盘上的最优放置点可以表示为:
最优放置点
该稀疏解不损失最优性,证明过程在论文中多有提及,不再赘述。

五、本文小结

本文建立了PLP问题的数学模型,并使用线性规划对该问题进行了求解,对于规模较大的问题,采用稀疏策略进行优化,完整代码见公众号,不定期更新各类运筹优化算法源码。
明湖底的炼丹炉

这篇关于二维托盘装载问题的建模与求解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963537

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原