二维托盘装载问题的建模与求解

2024-05-06 05:36

本文主要是介绍二维托盘装载问题的建模与求解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题简介

二维托盘装载问题是托盘装载问题的一个特殊情况,它仅考虑了长度和宽度两个维度,忽略了高度这一维度,因此也被称为二维装箱问题(2D Bin Packing Problem)。该问题的目标是将一组不同长度和宽度的矩形箱子,无重叠地装载到一个固定大小的矩形托盘上,使得托盘的利用面积最大化,如下图所示为一个托盘装载问题的示意图。
托盘装载问题示例
通常而言,托盘装载问题主要包含以下约束:
(1)托盘的长宽固定
(2)箱子的长宽固定
(3)箱子之间不允许重叠
(4)所有箱子必须在托盘区域内
(5)箱子可以根据需要旋转90度

托盘装载问题的优化目标通常为最大化托盘利用面积,即装载后剩余的空余面积最小,相比三维托盘装载问题,二维版本忽略了高度这一维度的约束,问题的复杂度有所降低,但仍然属于NP难问题。常用的解决方法包括:

近似算法
(1)近似比分数算法 (APFA)
(2)最坏情况比率算法 (WSCRA)

启发式算法
(1)下一适合位置算法 (NFFA)
(2)最大空隙度算法 (LGA)

元启发式算法
(1)遗传算法
(2)模拟退火算法
(3)蚁群算法等

精确算法
(1)枚举法
(2)线性规划法等

二维托盘装载问题虽然是一个理论化简的模型,但也有现实应用场景,例如多层板条箱装载问题,纸板、木板、金属板等装载最优化,仓库地面区域规划与划分,集装箱货物装载优化等,本文首先对该问题进行建模,然后采用线性规划方法对该问题进行求解,受限于问题的复杂度,该方法仅适用于小规模的求解。

二、模型搭建

2.1 符号定义

符号定义

2.2 数学模型

请添加图片描述

其中:
式(0)最大化装载箱子数量;
式(1)保证对于放置在托盘上的每个箱子互不重叠;
式(3)-(4)对变量类型进行约束。
稍微需要注意的是约束(1),两个箱子的边界是可以重合的,因此托盘上所有点都最多有一个箱子覆盖这样的描述是不成立的。

三、核心代码

3.1 求解代码
#求解器
model=Model('pallet loading')x,y=dict(),dict()
for i in lp:for j in wp:x[(i,j)]=model.addVar(vtype='B',name='x[{}][{}]'.format(i,j))y[(i,j)]=model.addVar(vtype='B',name='y[{}][{}]'.format(i,j))#目标函数
obj=0
for i in lp:for j in wp:if i+a<=L and j+b<=W:obj+=x[(i,j)]if i+b<=L and j+a<=W:obj+=y[(i,j)]
model.setObjective(obj,sense='maximize')#坐标点s和r
for r in range(L):for s in range(W):expr=0for i in lp:for j in wp:if (i<=r and i+a>r) and (j<=s and j+b>s) and i+a<=L and j+b<=W:expr+=x[(i,j)]if (i<=r and i+b>r) and (j<=s and j+a>s) and i+b<=L and j+a<=W:expr+=y[(i,j)]if expr:model.addCons(expr<=1,name='({},{})'.format(r,s))#求解
model.optimize()
3.2 可视化代码
def plot_box(points,puts,L,W):separate=10colors = ['#00FFFF','#7FFFD4','#000000','#0000FF','#8A2BE2','#A52A2A','#DEB887','#5F9EA0','#7FFF00','#D2691E','#FF7F50','#6495ED','#DC143C','#00FFFF','#00008B','#008B8B','#B8860B','#A9A9A9','#006400','#BDB76B']plt.figure(figsize=[20,20*W/L])plt.xlim(0,L)plt.ylim(0,W)num=len(points)for i in range(num):point=points[i]put=puts[i]if put=='x':for l in range(b*separate+1):plt.plot([point[0]+i for i in range(a+1)],[point[1]+l/separate for i in range(a+1)],color=colors[i%len(colors)])plt.plot([point[0] for i in range(b+1)],[point[1]+i for i in range(b+1)],color=colors[i%len(colors)])plt.plot([point[0]+a for i in range(b+1)],[point[1]+i for i in range(b+1)],color=colors[i%len(colors)])if put=='y':plt.plot([point[0]+i for i in range(b+1)],[point[1] for i in range(b+1)],color=colors[i%len(colors)])plt.plot([point[0]+i for i in range(b+1)],[point[1]+a for i in range(b+1)],color=colors[i%len(colors)])for w in range((b)*separate):plt.plot([point[0]+w/separate for i in range(a+1)],[point[1]+i for i in range(a+1)],color=colors[i%len(colors)])

四、测试结果

在这一小节中,用两个case来验证本文算法的有效性,第一个case规模较小,第二个case规模较大,求解时间较长,基本临近线性规划的求解极限。

4.1 简单case

在长宽分别为11、10的托盘中,放置长宽分别为4、3的箱子,最多放置的箱子数量为9,放置结果如下图所示。
简单case

4.2 复杂case

在长宽分别为200、100的托盘中,放置长宽分别为15,10的箱子,最多放置的箱子数量为133,放置结果如下图所示。
复杂case
对于第二个case,直接求解其实还是比较有难度,为了加速求解,对可放置点进行了稀疏处理,理论上托盘上的最优放置点可以表示为:
最优放置点
该稀疏解不损失最优性,证明过程在论文中多有提及,不再赘述。

五、本文小结

本文建立了PLP问题的数学模型,并使用线性规划对该问题进行了求解,对于规模较大的问题,采用稀疏策略进行优化,完整代码见公众号,不定期更新各类运筹优化算法源码。
明湖底的炼丹炉

这篇关于二维托盘装载问题的建模与求解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963537

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使