c++ BSTree二叉搜索树(附原码)

2024-05-06 04:36
文章标签 c++ 搜索 二叉 原码 bstree

本文主要是介绍c++ BSTree二叉搜索树(附原码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、概念

二、基本操作

1、插入

2、中序遍历

3、删除

4、查找

5、总结删除

三、应用场景

四、原码



一、概念

左子树比根小,右子树比根大
意义:最多查找高度次数
不需要排序,就达到了二分查找的效率
同时还弥补了单纯数组的插入删除效率低的问题
其中序遍历,是一个升序,所以也叫做二叉排序树

默认定义,搜索树不允许冗余,搜索树也不允许修改
k模型的搜索树不可以修改,因为修改,那就破坏了搜索树的基本结构
k-v模型的搜索树可以修改,修改val部分,搜索树以key为参考构成搜索树

二、基本操作

1、插入

小的插入左边,大的插入右边

注意,先后插入的顺序不同,会导致树的结构不同

2、中序遍历

中序遍历,需要根节点,但是根节点为私有,怎么办?

1)友元(不推荐)
2)缺省参数、
3)再套一层
什么意思?
将函数设置为私有
再在public部分写一个函数2调用函数1

		//4、中序void Inorder(){_Inorder(_root);cout << endl;}private:void _Inorder( Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_key << ":" << root->_val << endl;_Inorder(root->_right);}

3、删除

替换法(此处的代码逻辑是右子树的最小节点
左子树的最大节点:保证比所有左子树都大
右子树的最小节点:保证比所有右子树都小
交换,删除
但是左子树的最大节点或者右子树的最小节点并不一定是叶子节点
有可能带有节点,所以,需要特殊判断处理

删一个叶子、带一个孩子、带两个孩子,画图依次判断情况

1、带有一个孩子节点的情况:(顺带没有孩子的也解决了,因为链接的是空)
如果我只有一个右孩子,那就要看我是父节点的左孩子还右孩子,需要判断
父节点链接我的右孩子
如果我只有一个左孩子,同样的道理,父节点链接我的左孩子

2、带有两个孩子的节点的删除
替换法:
左子树的最大节点(最右节点),右子树的最小节点(最左节点)
交换,删除
但是要注意个特殊情况:即左子树没有最大节点,右子树没有最小节点,就要单独判断

还有一个坑:
如果根节点的左子树为空,此删除根节点就会出错,因为根据代码逻辑,此时的根节点已经没有了parent
需要单独判断

4、查找

这个简单

5、总结删除

有两种情况:

1、删除叶子节点

2、删除非叶子节点

1)删除带有一个孩子的节点(左/右)
可以把删除叶子节点一同处理,即叶子节点不需要特殊处理
为什么?删除带有一个孩子的节点
其父节点都要链接上该节点的左孩子/右孩子
如果是叶子节点,那么左孩子/右孩子是空,就直接连接上了

除了以上的正常情况
还需要考虑删除的是根节点
也就是单支树的情况
此时也要特殊处理

2)删除带两个孩子的节点
找右子树的最左边节点
又分两种情况:
a、没有最左节点
b、有最左节点

总之,画图!画图!画图!自己分析。不懂,拿我原码去看,推逻辑,自己手撕一遍,从头到尾。如此,抽丝剥茧,一砖一瓦,焉有不会之理?


三、应用场景


1、k模型
构建一个搜索树
查找一个key在不在搜索树内
例如查找文本错误单词

2、k-v模型(key-val)
通过key查找value
可以统计某个关键词次数


搜索二叉树有一个致命点:
当key为有序,就会构成仅有左子树/右子树(单支)的结构,即退化
因此,又有了AVL树和红黑树,解决左右子树高度平衡的问题,即所谓平衡树

四、原码

#pragma once
#include<iostream>
using namespace std;namespace myspace
{template<class K, class V >struct BSTreeNode{BSTreeNode<K, V>* _left;BSTreeNode<K, V>* _right;K _key;V _val ;BSTreeNode(const K& key, const V& val ):_key(key),_val(val),_left(nullptr),_right(nullptr){}};template<class K, class V>class BSTree{typedef BSTreeNode<K,V> Node;public://1、插入bool insert(const K& key, const V& val = 0){//已经存在节点,返回false,不存在,插入(不冗余)if(_root == nullptr){_root = new Node(key,val);return true;}Node* cur = _root;Node* parent = _root;//根节点不为空while (cur){if (key < cur->_key){parent = cur;cur = cur->_left;}else if(key > cur->_key){parent = cur;cur = cur->_right;}else{return false;}}//找到空节点if (key < parent->_key){parent->_left = new Node(key,val);}else{parent->_right = new Node(key,val);}return true;}//2、删除bool erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (key < cur->_key){parent = cur;cur = cur->_left;}else if(key > cur->_key){parent = cur;cur = cur->_right;}else//找到节点{if (cur->_left == nullptr)//左孩子为空{if (cur == _root)//右单支树{_root = cur->_right;}else{if (parent->_left->_key == cur->_key){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if (cur->_right == nullptr)//右孩子为空{if (cur == _root)//左单支树{_root = cur->_left;}else{if (parent->_left->_key == cur->_key){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else//两个孩子均不为空{//从cur开始,找右子树的最小,即右子树的最左Node* rightMinparent = cur;Node* rightMin = cur->_right;while (rightMin->_left){rightMinparent = rightMin;rightMin = rightMin->_left;}//到这里,说明找到了rightMinswap(cur->_key,rightMin->_key);if (rightMinparent->_left == rightMin)//正常情况下,存在rightMin{rightMinparent->_left = rightMin->_right;}else//不存在rightMin{rightMinparent->_right = rightMin->_right;}delete rightMin;}return true;}}//走到这里,说明找到空了也没有找到return false;}//3、查找Node* find(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key == key){return cur;}if (key < cur->_key){parent = cur;cur = cur->_left;}else{parent = cur;cur = cur->_right;}}//走到这里,说明找到空了也没有找到return nullptr;}//4、中序void Inorder(){_Inorder(_root);cout << endl;}private:void _Inorder( Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_key << ":" << root->_val << endl;_Inorder(root->_right);}private:Node* _root = nullptr;};void BSTreetest1(){BSTree<int, int> bs;bs.insert(1,1);bs.insert(2,2);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(4,4);bs.insert(5,99);bs.insert(6,100);bs.Inorder();if (bs.find(100))cout << "存在" << endl;elsecout << "不存在" << endl;}void BSTreetest2()//右子树没有最左节点{BSTree<int, int> bs;bs.insert(10);bs.insert(3);bs.insert(18);bs.insert(2);bs.insert(8);bs.insert(9);bs.insert(12);bs.insert(16);bs.Inorder();bs.erase(3);bs.Inorder();}void BSTreetest3()//右子树有最左节点{BSTree<int, int> bs;bs.insert(10);bs.insert(3);bs.insert(18);bs.insert(2);bs.insert(8);bs.insert(9);bs.insert(12);bs.insert(16);bs.insert(5);bs.insert(6);bs.Inorder();bs.erase(3);bs.Inorder();}void BSTreetest4()//右单支树,{BSTree<int, int> bs;bs.insert(1);bs.insert(2);bs.insert(3);bs.insert(4);bs.Inorder();bs.erase(1);bs.Inorder();}void BSTreetest5()//左单支树,{BSTree<int, int> bs;bs.insert(4);bs.insert(3);bs.insert(2);bs.insert(1);bs.Inorder();bs.erase(1);bs.Inorder();}}

这篇关于c++ BSTree二叉搜索树(附原码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963437

相关文章

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O