Hadoop 三台主机 集群搭建 详解(测试)

2024-05-06 00:48

本文主要是介绍Hadoop 三台主机 集群搭建 详解(测试),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hadoop 三台主机 集群搭建 详解

学习更多,请访问系列文章:

1. VMware Redhat网络配置

2. Hadoop 三台主机 集群搭建 详解

3. Windows 下配置 Eclipse 连接 Hadoop 开发环境


部署环境:

OS:Redhat 5.5 Enterprise

JDK:jdk1.6.0_32

Hadoop:Hadoop-0.20.2

VMWare:7.0

节点安排及网络拓扑:

节点类型      节点IP      节点hostname

master节点     192.168.40.5  master

slave节点      192.168.40.5  master(此时,master既是master节点,也是slave节点)

          192.168.40.6  salve1

          192.168.40.7  slave2

secondaryName节点192.168.40.5  master(此时,master既是master节点,也是slave节点,也是secondaryNameNode)

配置步骤:

一、网络配置

首先关闭三台虚拟机的防火墙,步骤可参考:关闭防火墙

先用VMWare安装三台虚拟机(可以先安装一台,然后clone两台),按照节点安排及网络拓扑配置网络,先配置master节点的网络:

① 静态网络IP配置见VMware Redhat网络配置,分别将三台虚拟机的IP进行设置

② 修改主机名:vi /etc/hosts(解析IP要用),添加

192.168.40.5 master
192.168.40.6 slave1
192.168.40.7 slave2

③ 按照此过程及相同数据(除了IP地址不同)对三台虚拟机进行配置

、 安装jdk

Hadoop 是用java开发的,Hadoop的编译及mapreduce的运行都需要使用JDK,所以JDK是必须安装的

① 下载jdk,http://www.oracle.com/technetwork/java/javase/downloads/index.html

② 在用户根目录下,建立bin文件夹:mkdir ~/bin(也可放在其他处,个人习惯而已)

③ 改变执行权限:chmod u+x jdk-6u26-linux-i586.bin

④ 执行文件:sudo -s ./jdk-6u26-linux-i586.bin,一路确定

⑤ 配置环境变量:vi ~/.bash_profile,添加:

export JAVA_HOME=/root/bin/jdk1.6.0_32
export PATH=$PATH:$JAVA_HOME/bin

⑥ 使profile文件生效:source ~/.bash_profile

⑦ 验证是否配置成功:which java

[root@master ~]# which java
/root/bin/jdk1.6.0_32/bin/java 配置生效。也可输入java -version, java, javac进一步确定

⑧ 分别相同配置另外两台主机

<JDK Installation End>

三、建立ssh互信

hadoop 需要通过ssh互信来启动slave里表中各个主机的守护进程,所以SSH是必须安装的(redhat 5.5 Enterprise 以默认安装)。但是是否建立ssh互信(即无密码登陆)并不是必须的,但是如果不配置,每次启动hadoop,都需要输入密码以便登录到每台机器的Datanode上,而一般的hadoop集群动辄数百或数千台机器,因此一般来说都会配置ssh互信。

① 生成密钥并配置ssh无密码登陆主机(在master主机)

ssh -keygen -t dsa -P '' -f ~/.ssh/id_dsa

cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

② 将authorized_keys文件拷贝到两台slave主机

scp authorized_keys slave1:~/.ssh/

scp authorized_keys slave2:~/.ssh/

③ 检查是否可以从master无密码登陆slave机

ssh slave1(在master主机输入) 登陆成功则配置成功,exit退出slave1返回master

四、配置Hadoop

① 下载:点击到下载页面,选择hadoop-0.20.2.tar.gz

② 放到~/bin下解压: tar -xzvf hadoop-0.20.2.tar.gz

③ 解压后进入:~/bin/hadoop-0.20.2/conf/,修改配置文件:

修改hadoop-env.sh:

export JAVA_HOME=/root/bin/jdk1.6.0_32
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

hadoop-env.sh里面有这一行,默认是被注释的,只需要把注释去掉,并且把JAVA_HOME 改成你的java安装目录即可

修改core-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?><!-- Put site-specific property overrides in this file. --><configuration><property><name>fs.default.name</name><value>hdfs://master:9000</value></property><property><name>Hadoop.tmp.dir</name><value>/tmp/hadoop-root</value></property>
</configuration>
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

注释一:hadoop分布式文件系统文件存放位置都是基于hadoop.tmp.dir目录的,namenode的名字空间存放地方就是 ${hadoop.tmp.dir}/dfs/name, datanode数据块的存放地方就是 ${hadoop.tmp.dir}/dfs/data,所以设置好hadoop.tmp.dir目录后,其他的重要目录都是在这个目录下面,这是一个根目录。

注释二:fs.default.name,设置namenode所在主机,端口号是9000

注释三:core-site.xml 对应有一个core-default.xml, hdfs-site.xml对应有一个hdfs-default.xml,mapred-site.xml对应有一个mapred-default.xml。这三个defalult文件里面都有一些默认配置,现在我们修改这三个site文件,目的就覆盖default里面的一些配置

修改hdfs-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?><!-- Put site-specific property overrides in this file. --><configuration><property><name>dfs.replication</name><value>3</value></property>
</configuration>
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

dfs.replication,设置数据块的复制次数,默认是3,如果slave节点数少于3,则写成相应的1或者2

修改mapred-site.xml

 

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?><!-- Put site-specific property overrides in this file. --><configuration><property><name>mapred.job.tracker</name><value>http://master:9001</value></property>
</configuration>
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

mapred.job.tracker,设置jobtracker所在机器,端口号9001

修改masters

master      
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

虽然masters内写的是master,但是个人感觉,这个并不是指定master节点,而是配置secondaryNameNode

修改slaves

master
slave1
slave2
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/
 

配置了集群中所有slave节点

④ 添加hadoop环境变量,并 source ~/.bash_profile使之生效

export JAVA_HOME=/root/bin/jdk1.6.0_32
export HADOOP_HOME=/root/bin/hadoop-0.20.2
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

⑤ 将已经配置好的hadoop-0.20.2,分别拷贝到另外两台主机,并做相同配置

⑥ 此时,hadoop的集群配置已经完成,输入hadoop,则可看到hadoop相关的操作

[root@master ~]# hadoop
Usage: hadoop [--config confdir] COMMAND
where COMMAND is one of:namenode -format     format the DFS filesystemsecondarynamenode    run the DFS secondary namenodenamenode             run the DFS namenodedatanode             run a DFS datanodedfsadmin             run a DFS admin clientmradmin              run a Map-Reduce admin clientfsck                 run a DFS filesystem checking utilityfs                   run a generic filesystem user clientbalancer             run a cluster balancing utilityjobtracker           run the MapReduce job Tracker nodepipes                run a Pipes jobtasktracker          run a MapReduce task Tracker nodejob                  manipulate MapReduce jobsqueue                get information regarding JobQueuesversion              print the versionjar <jar>            run a jar filedistcp <srcurl> <desturl> copy file or directories recursivelyarchive -archiveName NAME <src>* <dest> create a hadoop archivedaemonlog            get/set the log level for each daemonorCLASSNAME            run the class named CLASSNAME
Most commands print help when invoked w/o parameters.
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

⑦ 此时,首先格式化hadoop

在命令行里执行,hadoop namenode -format

⑧ 启动hadoop 

在命令行里执行,start-all.sh,或者执行start-dfs.sh,再执行start-mapred.sh

⑨ 输入jps,查看启动的服务进程

master节点:
[root@master ~]# jps
25429 SecondaryNameNode
25500 JobTracker
25201 NameNode
25328 DataNode
18474 Jps
25601 TaskTracker
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/
slave节点:
[root@slave1 ~]# jps
4469 TaskTracker
4388 DataNode
29622 Jps
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

如上显示,则说明相应的服务进程都启动成功了。

圈10(额,像①一样的圈出不来了(⊙o⊙)) 查看hdfs分布式文件系统的 文件目录结构

hadoop fs -ls /
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

此时发现为空,因为确实什么也没有,运行一下命令,则可创建一个文件夹:

hadoop fs -mkdir /newDir
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

再次执行hadoop fs -ls /,则会看到newDir文件夹,关于hadoop fs 命令,参见:HDFS 命令

圈11 运行hadoop 类似hello world的程序

本来,都是以word count来运行的,但是还得建文件夹之类的,有一个更简单的,就是example中的计算π值的程序,我们来计算一下,进入hadoop目录,运行如下:

[root@slave1 hadoop-0.20.2]# hadoop jar hadoop-0.20.2-examples.jar pi 4 2
Number of Maps  = 4
Samples per Map = 2
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
Wrote input for Map #3
Starting Job
12/05/20 09:45:19 INFO mapred.FileInputFormat: Total input paths to process : 4
12/05/20 09:45:19 INFO mapred.JobClient: Running job: job_201205190417_0005
12/05/20 09:45:20 INFO mapred.JobClient:  map 0% reduce 0%
12/05/20 09:45:30 INFO mapred.JobClient:  map 50% reduce 0%
12/05/20 09:45:31 INFO mapred.JobClient:  map 100% reduce 0%
12/05/20 09:45:45 INFO mapred.JobClient:  map 100% reduce 100%
12/05/20 09:45:47 INFO mapred.JobClient: Job complete: job_201205190417_0005
12/05/20 09:45:47 INFO mapred.JobClient: Counters: 18
12/05/20 09:45:47 INFO mapred.JobClient:   Job Counters 
12/05/20 09:45:47 INFO mapred.JobClient:     Launched reduce tasks=1
12/05/20 09:45:47 INFO mapred.JobClient:     Launched map tasks=4
12/05/20 09:45:47 INFO mapred.JobClient:     Data-local map tasks=4
12/05/20 09:45:47 INFO mapred.JobClient:   FileSystemCounters
12/05/20 09:45:47 INFO mapred.JobClient:     FILE_BYTES_READ=94
12/05/20 09:45:47 INFO mapred.JobClient:     HDFS_BYTES_READ=472
12/05/20 09:45:47 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=334
12/05/20 09:45:47 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=215
12/05/20 09:45:47 INFO mapred.JobClient:   Map-Reduce Framework
12/05/20 09:45:47 INFO mapred.JobClient:     Reduce input groups=8
12/05/20 09:45:47 INFO mapred.JobClient:     Combine output records=0
12/05/20 09:45:47 INFO mapred.JobClient:     Map input records=4
12/05/20 09:45:47 INFO mapred.JobClient:     Reduce shuffle bytes=112
12/05/20 09:45:47 INFO mapred.JobClient:     Reduce output records=0
12/05/20 09:45:47 INFO mapred.JobClient:     Spilled Records=16
12/05/20 09:45:47 INFO mapred.JobClient:     Map output bytes=72
12/05/20 09:45:47 INFO mapred.JobClient:     Map input bytes=96
12/05/20 09:45:47 INFO mapred.JobClient:     Combine input records=0
12/05/20 09:45:47 INFO mapred.JobClient:     Map output records=8
12/05/20 09:45:47 INFO mapred.JobClient:     Reduce input records=8
Job Finished in 28.952 seconds
Estimated value of Pi is 3.50000000000000000000
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

计算PI值为3.5,还算靠近,至于输出log日志,就不介绍了,以后学的稍微深入,可多做了解。

Hadoop 三节点集群的配置就介绍到这里,接下来,会介绍一下如何在windows中远程连接hadoop,并配置eclipse来进行MapReduce的开发和调试。



 

这篇关于Hadoop 三台主机 集群搭建 详解(测试)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963102

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚