FastAPI - Pydantic相关应用

2024-05-05 19:28
文章标签 应用 相关 fastapi pydantic

本文主要是介绍FastAPI - Pydantic相关应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述


参考链接:Pydantic官方文档


文章目录

    • 定义数据模型
    • 创建模型实例
    • 数据验证
    • 数据转换
    • 模型转换
    • 模型更新
    • 模型配置
    • 辅助类
      • Field
      • @validator


Pydantic 是一个 Python 库,主要用于数据验证和管理。数据验证是指检查数据是否符合预定的规则和格式,比如检查数据类型是否正确,是否缺少必要的字段等。数据管理是指定义数据的结构和行为,比如设置默认值,转换数据类型等。


以下是 Pydantic 的一些基本操作语法:

定义数据模型

首先,通过继承 Pydantic 提供的 BaseModel 类定义一个数据模型:

from pydantic import BaseModelclass User(BaseModel):id: intname: stremail: stris_active: bool = True

在这个例子中,定义了 User 数据模型,有四个字段:id(整数类型)、name(字符串类型)、email(字符串类型)和 is_active(布尔类型,默认值为 True)。

创建模型实例

创建数据模型的实例非常简单,只需要按照定义的字段传递相应的值即可:

user = User(id=1, name="John Doe", email="john.doe@example.com")

如果某个字段有默认值,你可以选择不提供它:

user = User(id=1, name="John Doe", email="john.doe@example.com")  # is_active 将默认为 True

数据验证

当创建模型实例时,Pydantic 会自动进行数据验证。如果数据不符合定义的类型,会进行报错:

try:user = User(id="not_an_integer", name="John Doe", email="john.doe@example.com")
except ValidationError as e:print(str(e))  # 输出错误信息

数据转换

Pydantic 可以自动进行数据类型转换。例如,如果传递一个字符串类型的 id,Pydantic 会自动将其转换为整数类型:

user = User(id="1", name="John Doe", email="john.doe@example.com")
print(user.id)  # 输出: 1

模型转换

Pydantic 可以将模型转换为字典或 JSON 格式:

user_dict = user.dict()
print(user_dict)  # 输出: {'id': 1, 'name': 'John Doe', 'email': 'john.doe@example.com', 'is_active': True}user_json = user.json()
print(user_json)  # 输出: {"id": 1, "name": "John Doe", "email": "john.doe@example.com", "is_active": true}

模型更新

可以使用 update 方法来更新模型的属性:

user.update(name="Jane Doe")
print(user.name)  # 输出: Jane Doe

模型配置

Pydantic 允许通过 Config 类来配置模型的行为。例如,你可以设置一个示例数据,这在生成文档时非常有用:

class User(BaseModel):id: intname: stremail: stris_active: bool = Trueclass Config:schema_extra = {"example": {"id": 1,"name": "John Doe","email": "john.doe@example.com","is_active": True,}}

在这个例子中,添加了 Config 类来定义模型的元数据,比如 schema_extra,可以用于生成文档或提供示例数据。

辅助类

Field

导入

from pydantic import BaseModel, Field

字段别名

使用 alias 参数可以为字段设置别名,这在处理 JSON 数据时非常有用,因为 JSON 字段名通常与 >Python 字段名不同:

class User(BaseModel):id: int = Field(alias="_id")name: stremail: str = Field(alias="email_address")is_active: bool = Field(default=True)

在这个例子中,id 字段在 JSON 数据中的别名是 _id,而 email 字段的别名是 email_address

字段描述

使用 description 参数可以为字段添加描述信息,这在生成文档时非常有用:

class User(BaseModel):id: int = Field(description="The unique identifier of the user")name: str = Field(description="The full name of the user")email: str = Field(description="The user's email address")is_active: bool = Field(default=True, description="Whether the user is active or not")

字段标题

使用 title 参数可以为字段设置标题,这在生成文档时非常有用:

class User(BaseModel):id: int = Field(title="The ID of the user")name: str = Field(title="The Name of the user")email: str = Field(title="The Email of the user")is_active: bool = Field(default=True, title="The Active Status of the user")

字段示例

使用 example 参数可以为字段设置示例值,这在生成文档或测试时非常有用:

class User(BaseModel):id: int = Field(example=123)name: str = Field(example="John Doe")email: str = Field(example="john.doe@example.com")is_active: bool = Field(default=True, example=True)

字段默认值

Field 的 default 参数可以设置字段的默认值:

class User(BaseModel):id: intname: stremail: stris_active: bool = Field(default=True)

在这个例子中,is_active 字段有一个默认值 True。

字段常量

Field 的 const 参数可以设置字段为常量,这意味着该字段的值在实例化后不能被修改:


class User(BaseModel):id: intname: stremail: stris_active: bool = Field(default=True, const=True)

在这个例子中,is_active 字段被设置为常量,它的值在实例化后不能被修改。

字段验证

Field 的 regex 参数可以设置字段的正则表达式验证:

class User(BaseModel):id: intname: stremail: str = Field(regex=r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$")is_active: bool = Field(default=True)

在这个例子中,email 字段的值必须匹配指定的正则表达式,否则会抛出验证错误。

在 Pydantic 中,@validator 是用于创建自定义验证方法的装饰器。这些自定义验证方法可以用于对模型字段的值进行复杂的验证逻辑,或者在某些情况下对多个字段的值进行交叉验证。

以下是 @validator 的一些应用场景:

@validator

首先,需要从 pydantic 模块中导入 validator

from pydantic import BaseModel, validator

单字段验证

@validator 可以用于对单个字段的值进行验证。例如,可以确保一个字段的值在某个范围内:

class User(BaseModel):age: int@validator('age')def age_must_be_between_18_and_100(cls, v):if v < 18 or v > 100:raise ValueError('Age must be between 18 and 100')return v

在这个例子中,age_must_be_between_18_and_100 方法是一个验证器,检查 age 字段的值是否在 18 到 100 之间。如果值不在范围内,会抛出一个 ValueError

多字段验证

@validator 也可以用于对多个字段的值进行交叉验证。例如,可以确保两个字段的值满足某个条件:

class User(BaseModel):name: strpassword: strpassword_confirm: str@validator('password_confirm')def passwords_match(cls, v, values):if 'password' in values and v != values['password']:raise ValueError('Passwords do not match')return v

在这个例子中,passwords_match 方法是一个验证器,检查 password_confirm 字段的值是否与 password 字段的值相匹配。如果不匹配,会抛出一个 ValueErrorvalues 参数是一个字典,包含了所有其他字段的值。

验证器模式

@validator 还可以用于设置验证器的模式。模式可以是 pre
each_item,分别对应于在验证开始之前和列表中的每个项之前执行验证器。

class User(BaseModel):name: stritems: List[str]@validator('items', pre=True)def split_items(cls, v):if isinstance(v, str):return v.split(',')return v

在这个例子中,split_items 方法是一个 pre 模式的验证器,检查 items 字段的值是否是一个字符串,如果是,则将其分割成一个列表。

验证器别名

@validator 可以通过设置 allow_reuse=True 来创建别名,这样可以对同一个验证逻辑使用不同的字段名。

class User(BaseModel):name: strpassword: strpassword_confirm: str@validator('password_confirm', allow_reuse=True)@validator('password', allow_reuse=True)def password_length(cls, v):if len(v) < 8:raise ValueError('Password must be at least 8 characters long')return v

在这个例子中,password_length 方法被设置为两个字段的验证器,它检查这两个字段的值的长度是否至少为 8。


这篇关于FastAPI - Pydantic相关应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962480

相关文章

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

Python FastAPI实现JWT校验的完整指南

《PythonFastAPI实现JWT校验的完整指南》在现代Web开发中,构建安全的API接口是开发者必须面对的核心挑战之一,本文将深入探讨如何基于FastAPI实现JWT(JSONWebToken... 目录一、JWT认证的核心原理二、项目初始化与环境配置三、安全密码处理机制四、JWT令牌的生成与验证五、