[图解]cv2.HoughLines() 和 cv2.HoughLinesP()原理和代码

2024-05-05 14:32

本文主要是介绍[图解]cv2.HoughLines() 和 cv2.HoughLinesP()原理和代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论

如上图,左边a,b固定可以确定一条直线,线是(x_i,y_j) 组成的集合.

下面从xy空间变化到ab空间,此时给定一个绿点(x_i,y_j)可以确定一条绿色的线,给定一个蓝点 

(x_i,y_j)可以确定一条蓝色的线,绿线和蓝线相交的点就是左边确定红线的参数a和b.此时xy空间里红线上的其他点,变换到ab空间必过蓝绿线相交点.

下面把ab换成rho和theta.

rho = x cos (theta) + y sin (theta)  这里面rho 是原点到直线的垂直距离,和 theta是由这条垂直线和逆时针测量的水平轴形成的角度(该方向因您表示坐标系的方式而异。OpenCV 中使用了这种表示)。检查下面的图像:

所以如果线在原点以下通过,它会有一个正的 rho 并且角度小于 180。如果它在原点之上,而不是取大于 180 的角度,而是取小于 180 的角度,并且 rho被取为阴性。任何垂直线将具有 0 度,水平线将具有 90 度。

现在让我们看看霍夫变换如何处理线条。任何线都可以用这两个术语表示,(rho, theta). 因此,首先创建一个二维数组或累加器(以保存两个参数的值),并且最初设置为 0。让行表示(rho) 和列表示 (theta). 数组的大小取决于您需要的精度。假设您希望角度精度为 1 度,您将需要 180 列。对于(rho),可能的最大距离是图像的对角线长度。所以取一像素精度,行数可以是图像的对角线长度。

考虑一个 100x100 的图像,取一个点。你知道它的 (x,y) 值。现在在线方程中,输入值(theta = 0,1,2,....,180) 并检查 (rho)你得到。对于每(rho,theta) 对,您在相应的累加器中将值增加 1 ,所以现在在累加器中,单元格 (50,90) = 1 以及其他一些单元格。

现在取直线上的第二个点。执行与上述相同的操作。增加与您获得的单元格相对应的值。这样,最后,(rho,theta) 单元格累积数越多,说明过这条线的点越多,当大于某一阈值的时候,我们说这是我们要找的一条直线.

OpenCV 中的霍夫变换

上面解释的所有内容都封装在 OpenCV 函数cv2.HoughLines() 中。它只是返回一组(rho, theta)列表。rho以像素为单位测量,并且theta以弧度为单位。第一个参数,输入图像应该是一个二值图像,所以在应用霍夫变换之前应用阈值或使用精明的边缘检测。第二个和第三个参数分别是rho 和theta的精度。第四个参数是阈值,这意味着它应该被视为一条线的最低投票数。请记住,投票数取决于线上的点数。所以它可能代表了应该检测的最小线长。

Python:
cv.HoughLines(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]) ->lines

例子代码:

import cv2
import numpy as npimg = cv2.imread('../data/sudoku.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)lines = cv2.HoughLines(edges,1,np.pi/180,200)
for line in lines:rho,theta = line[0]a = np.cos(theta)b = np.sin(theta)x0 = a*rhoy0 = b*rhox1 = int(x0 + 1000*(-b))y1 = int(y0 + 1000*(a))x2 = int(x0 - 1000*(-b))y2 = int(y0 - 1000*(a))cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2)cv2.imwrite('houghlines3.jpg',img)

image

 概率霍夫变换

在霍夫变换中,您可以看到,即使对于具有两个参数的行,也需要进行大量计算。概率霍夫变换是我们看到的霍夫变换的优化。它没有考虑所有要点。相反,它只需要一个足以进行线检测的随机点子集。只是我们必须降低阈值。请参见下图,它比较了霍夫空间中的霍夫变换和概率霍夫变换。

图片

OpenCV 实现基于 Matas, J. 和 Galambos, C. 和 Kittler, JV [55]使用渐进式概率霍夫变换对线条进行鲁棒检测。使用的函数是cv2.HoughLinesP()。它有两个新参数。

  • minLineLength - 线的最小长度。比这短的线段被拒绝。
  • maxLineGap - 线段之间的最大允许间隙,将它们视为一条线。

好处是,它直接返回线的两个端点。在前面的例子中,你只得到线的参数,你必须找到所有的点。在这里,一切都是直接而简单的。

示例代码:

import cv2
import numpy as npimg = cv2.imread('../data/sudoku.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength=100,maxLineGap=10)
for line in lines:x1,y1,x2,y2 = line[0]cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)cv2.imwrite('houghlines5.jpg',img)

image

参考英文链接:

https://vovkos.github.io/doxyrest-showcase/opencv/sphinxdoc/page_tutorial_py_houghlines.html

这篇关于[图解]cv2.HoughLines() 和 cv2.HoughLinesP()原理和代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961940

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu