[Algorithm][堆][优先级队列][最后一块石头的重量][数据流中的第K大元素][前K个高频单词][数据流中的中位数]详细讲解

本文主要是介绍[Algorithm][堆][优先级队列][最后一块石头的重量][数据流中的第K大元素][前K个高频单词][数据流中的中位数]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.最后一块石头的重量
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.数据流中的第 K 大元素
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 3.前K个高频单词
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 4.数据流的中位数
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


1.最后一块石头的重量

1.题目链接

  • 最后一块石头的重量

2.算法原理详解

  • 思路:利用大根堆
    • 将所有的⽯头放⼊⼤根堆中
    • 每次拿出前两个堆顶元素粉碎⼀下,如果还有剩余,就将剩余的⽯头继续放⼊堆中

3.代码实现

int LastStoneWeight(vector<int>& stones) 
{priority_queue<int> heap; // STL默认大根堆for(auto& x : stones){heap.push(x);}// 模拟过程while(heap.size() > 1){int a = heap.top();heap.pop();int b = heap.top();heap.pop();if(a > b){heap.push(a - b);}}return heap.size() ? heap.top() : 0;
}

2.数据流中的第 K 大元素

1.题目链接

  • 数据流中的第 K 大元素

2.算法原理详解

  • 本题为TOP-K的运用
  • TOP-K问题,一般用一下两种方法来解决
    • O ( N ∗ l o g K ) O(N*logK) O(NlogK)
    • 快速选择算法 O ( N ) O(N) O(N)
  • 用堆解决TOP-K问题
    • 用数据集合中前K个元素来建堆
      • 前k个最大的元素:建小堆
      • 前k个最小的元素:建大堆
    • 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
    • 走完以后,堆里面的k个数,就是最大的前k个
  • 流程
    • 创建一个大小为k的堆(大根堆/小根堆)
    • 循环
      • 依次进堆
      • 判断堆的大小是否超过k
  • 如何判断是否用大根堆还是小根堆,为什么呢?
    • TOP-K-MAX:建小堆
      • 依次进堆,当heap.size() > k时,弹出堆顶元素
      • 因为堆顶元素是最小的,绝对不会是TOP-K-MAX
    • TOP-K-MIN:建大堆
      • 依次进堆,当heap.size() > k时,弹出堆顶元素
      • 因为堆顶元素是最大的,绝对不会是TOP-K-MIN

3.代码实现

class KthLargest 
{// 创建一个大小为k的小根堆priority_queue<int, vector<int>, greater<int>> heap;int _k = 0;
public:KthLargest(int k, vector<int>& nums) {_k = k;for(auto& x : nums){heap.push(x);if(heap.size() > _k){heap.pop();}}}int add(int val) {heap.push(val);if(heap.size() > _k){heap.pop();}return heap.top();}
};

3.前K个高频单词

1.题目链接

  • 前K个高频单词

2.算法原理详解

  • 思路:利用"堆"来解决TOP-K问题
    • 预处理原始的字符串数组
      • 哈希表统计每一个单词出现的频次
    • 创建一个大小为k的堆
      • 频次:小根堆
      • 字典序(频次相同的时候):大根堆
    • 循环
      • 让元素一次进堆
      • 判断
    • 提取结果
      • 把数组逆序

3.代码实现

 class Solution 
{typedef pair<string, int> PSI;struct Cmp{bool operator()(PSI& a, PSI& b){// 频次相同,字典序按大根堆排序if(a.second == b.second){return a.first < b.first;}// 频次按小根堆排序return a.second > b.second;}};
public:vector<string> TopKFrequent(vector<string>& words, int k) {// 统计每个单词出现的次数unordered_map<string, int> hash;for(auto& str : words){hash[str]++;}// 创建一个大小为k的堆priority_queue<PSI, vector<PSI>, Cmp> heap;// TOP-Kfor(auto& psi : hash){heap.push(psi);if(heap.size() > k){heap.pop();}}// 提取结果,逆序heapvector<string> ret(k);for(int i = k - 1; i >= 0; i--){ret[i] = heap.top().first;heap.pop();}return ret;}
};

4.数据流的中位数

1.题目链接

  • 数据流的中位数

2.算法原理详解

  • 思路一:直接sort

    • 时间复杂度:
      • add() O ( N ∗ l o g N ) O(N*logN) O(NlogN)
      • find() O ( 1 ) O(1) O(1)
    • 每次add(),都sort一遍,时间复杂度很恐怖
      请添加图片描述
  • 思路二:插入排序的思想

    • 时间复杂度:
      • add() O ( N ) O(N) O(N)
      • find() O ( 1 ) O(1) O(1)
    • 每次add(),都在原数据基础上进行插入排序,时间复杂度有所改善
      请添加图片描述
  • 思路三:利用大小堆来维护数据流中位数

    • 此问题时关于**「堆」的⼀个「经典应⽤」**
    • 时间复杂度:
      • add() O ( l o g N ) O(logN) O(logN)
      • find() O ( 1 ) O(1) O(1)
    • 将整个数组「按照⼤⼩」平分成两部分(如果不能平分,那就让较⼩部分的元素多⼀个)
      • m == n
      • m > n -> m == n + 1
    • 将左侧部分放⼊「⼤根堆」中,然后将右侧元素放⼊「⼩根堆」中
    • 这样就能在 O ( 1 ) O(1) O(1)的时间内拿到中间的⼀个数或者两个数,进⽽求的平均数
      请添加图片描述
  • 细节add()时,如何维护m == n || m > n -> m == n + 1

    • m == n
      请添加图片描述

    • m > n -> m == n + 1
      请添加图片描述


3.代码实现

class MedianFinder 
{priority_queue<int> left; // 大根堆priority_queue<int, vector<int>, greater<int>> right; // 小根堆
public:MedianFinder() {}void AddNum(int num) {if(left.size() == right.size()){if(left.empty() || num <= left.top()){left.push(num);}else{right.push(num);left.push(right.top());right.pop();}}else{if(num <= left.top()){left.push(num);right.push(left.top());left.pop();}else{right.push(num);}}}double FindMedian() {if(left.size() == right.size()){return (left.top() + right.top()) / 2.0;}else{return left.top();}}
};

这篇关于[Algorithm][堆][优先级队列][最后一块石头的重量][数据流中的第K大元素][前K个高频单词][数据流中的中位数]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/961790

相关文章

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

SpringBoot整合Apache Flink的详细指南

《SpringBoot整合ApacheFlink的详细指南》这篇文章主要为大家详细介绍了SpringBoot整合ApacheFlink的详细过程,涵盖环境准备,依赖配置,代码实现及运行步骤,感兴趣的... 目录1. 背景与目标2. 环境准备2.1 开发工具2.2 技术版本3. 创建 Spring Boot

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Macos创建python虚拟环境的详细步骤教学

《Macos创建python虚拟环境的详细步骤教学》在macOS上创建Python虚拟环境主要通过Python内置的venv模块实现,也可使用第三方工具如virtualenv,下面小编来和大家简单聊聊... 目录一、使用 python 内置 venv 模块(推荐)二、使用 virtualenv(兼容旧版 P