Codeforces Round 943 (Div. 3 ABCDEFG1G2题) 视频讲解

2024-05-05 09:44

本文主要是介绍Codeforces Round 943 (Div. 3 ABCDEFG1G2题) 视频讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A. Maximize?

Problem Statement

You are given an integer x x x. Your task is to find any integer y y y ( 1 ≤ y < x ) (1\le y<x) (1y<x) such that gcd ⁡ ( x , y ) + y \gcd(x,y)+y gcd(x,y)+y is maximum possible.

Note that if there is more than one y y y which satisfies the statement, you are allowed to find any.

gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) is the Greatest Common Divisor of a a a and b b b. For example, gcd ⁡ ( 6 , 4 ) = 2 \gcd(6,4)=2 gcd(6,4)=2.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1000 1 \le t \le 1000 1t1000) — the number of test cases.

Each of the following t t t lines contains a single integer x x x ( 2 ≤ x ≤ 1000 2 \le x \le 1000 2x1000).

Output

For each test case, output any y y y ( 1 ≤ y < x 1 \le y < x 1y<x), which satisfies the statement.

Example

Example

input
7
10
7
21
100
2
1000
6
output
5
6
18
98
1
750
3

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int x;cin >> x;int mx = 0, p;for (int y = 1; y < x; y ++) {if (__gcd(x, y) + y > mx) {mx = __gcd(x, y) + y, p = y;}}cout << p << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

B. Prefiquence

Problem Statement

You are given two binary strings a a a and b b b. A binary string is a string consisting of the characters ‘0’ and ‘1’.

Your task is to determine the maximum possible number k k k such that a prefix of string a a a of length k k k is a subsequence of string b b b.

A sequence a a a is a subsequence of a sequence b b b if a a a can be obtained from b b b by the deletion of several (possibly, zero or all) elements.

Input

The first line consists of a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n and m m m ( 1 ≤ n , m ≤ 2 ⋅ 1 0 5 1\le n,m \le 2 \cdot 10^5 1n,m2105) — the length of string a a a and the length of string b b b, respectively.

The second line of each test case contains a binary string a a a of length n n n.

The third line of each test case contains a binary string b b b of length m m m.

It is guaranteed that the sum of values n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105. Similarly, the sum of values m m m over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, output a single number — the maximum k k k, such that the first k k k characters of a a a form a subsequence of b b b.

Example

Example

input
6
5 4
10011
1110
3 3
100
110
1 3
1
111
4 4
1011
1111
3 5
100
11010
3 1
100
0
output
2
2
1
1
3
0

Note

In the first example, the string ‘ 10 10 10’ is a subsequence of ‘ 1 11 0 1\color{red}11\color{red}0 1110’ but the string ‘ 100 100 100’ is not. So the answer is 2 2 2.

In the fifth example, a a a=‘ 100 100 100’, b b b=‘ 1 101 0 1\color{red}{10}1\color{red}0 11010’, whole string a a a is a subsequence of string b b b. So the answer is 3 3 3.

In the sixth example, string b b b does not contain ‘ 1 1 1’ so the answer is 0 0 0.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;int n, m;
string a, b;bool check(int x) {for (int i = 1, j = 0; i <= m; i ++) {if (a[j + 1] == b[i])j ++;if (j == x)return 1;}return 0;
}void solve() {cin >> n >> m >> a >> b;a = ' ' + a, b = ' ' + b;int l = 0, r = min(n, m);while (l < r) {int mid = l + r + 1 >> 1;if (check(mid)) l = mid;else r = mid - 1;}cout << l << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

C. Assembly via Remainders

Problem Statement

You are given an array x 2 , x 3 , … , x n x_2,x_3,\dots,x_n x2,x3,,xn. Your task is to find any array a 1 , … , a n a_1,\dots,a_n a1,,an, where:

  • 1 ≤ a i ≤ 1 0 9 1\le a_i\le 10^9 1ai109 for all 1 ≤ i ≤ n 1\le i\le n 1in.
  • x i = a i m o d a i − 1 x_i=a_i \bmod a_{i-1} xi=aimodai1 for all 2 ≤ i ≤ n 2\le i\le n 2in.

Here c m o d d c\bmod d cmodd denotes the remainder of the division of the integer c c c by the integer d d d. For example 5 m o d 2 = 1 5 \bmod 2 = 1 5mod2=1, 72 m o d 3 = 0 72 \bmod 3 = 0 72mod3=0, 143 m o d 14 = 3 143 \bmod 14 = 3 143mod14=3.

Note that if there is more than one a a a which satisfies the statement, you are allowed to find any.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 ) (1\le t\le 10^4) (1t104) — the number of test cases.

The first line of each test case contains a single integer n n n ( 2 ≤ n ≤ 500 ) (2\le n\le 500) (2n500) — the number of elements in a a a.

The second line of each test case contains n − 1 n-1 n1 integers x 2 , … , x n x_2,\dots,x_n x2,,xn ( 1 ≤ x i ≤ 500 ) (1\le x_i\le 500) (1xi500) — the elements of x x x.

It is guaranteed that the sum of values n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case output any a 1 , … , a n a_1,\dots,a_n a1,,an ( 1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1ai109) which satisfies the statement.

Example

input
5
4
2 4 1
3
1 1
6
4 2 5 1 2
2
500
3
1 5
output
3 5 4 9
2 5 11
5 14 16 5 11 24
501 500
2 7 5

Note

In the first test case a = [ 3 , 5 , 4 , 9 ] a=[3,5,4,9] a=[3,5,4,9] satisfies the conditions, because:

  • a 2 m o d a 1 = 5 m o d 3 = 2 = x 2 a_2\bmod a_1=5\bmod 3=2=x_2 a2moda1=5mod3=2=x2;
  • a 3 m o d a 2 = 4 m o d 5 = 4 = x 3 a_3\bmod a_2=4\bmod 5=4=x_3 a3moda2=4mod5=4=x3;
  • a 4 m o d a 3 = 9 m o d 4 = 1 = x 4 a_4\bmod a_3=9\bmod 4=1=x_4 a4moda3=9mod4=1=x4;

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int n;cin >> n;std::vector<int> a(n + 1);for (int i = 2; i <= n; i ++)cin >> a[i];cout << 501 << " ";int lst = 501;for (int i = 2; i <= n; i ++)cout << lst + a[i] << " ", lst += a[i];cout << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

D. Permutation Game

Problem Statement

Bodya and Sasha found a permutation p 1 , … , p n p_1,\dots,p_n p1,,pn and an array a 1 , … , a n a_1,\dots,a_n a1,,an. They decided to play a well-known “Permutation game”.

A permutation of length n n n is an array consisting of n n n distinct integers from 1 1 1 to n n n in arbitrary order. For example, [ 2 , 3 , 1 , 5 , 4 ] [2,3,1,5,4] [2,3,1,5,4] is a permutation, but [ 1 , 2 , 2 ] [1,2,2] [1,2,2] is not a permutation ( 2 2 2 appears twice in the array), and [ 1 , 3 , 4 ] [1,3,4] [1,3,4] is also not a permutation ( n = 3 n=3 n=3 but there is 4 4 4 in the array).

Both of them chose a starting position in the permutation.

The game lasts k k k turns. The players make moves simultaneously. On each turn, two things happen to each player:

  • If the current position of the player is x x x, his score increases by a x a_x ax.
  • Then the player either stays at his current position x x x or moves from x x x to p x p_x px.

The winner of the game is the player with the higher score after exactly k k k turns.

Knowing Bodya’s starting position P B P_B PB and Sasha’s starting position P S P_S PS, determine who wins the game if both players are trying to win.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1\le t\le 10^4 1t104) — the number of testcases.

The first line of each testcase contains integers n n n, k k k, P B P_B PB, P S P_S PS ( 1 ≤ P B , P S ≤ n ≤ 2 ⋅ 1 0 5 1\le P_B,P_S\le n\le 2\cdot 10^5 1PB,PSn2105, 1 ≤ k ≤ 1 0 9 1\le k\le 10^9 1k109) — length of the permutation, duration of the game, starting positions respectively.

The next line contains n n n integers p 1 , … , p n p_1,\dots,p_n p1,,pn ( 1 ≤ p i ≤ n 1 \le p_i \le n 1pin) — elements of the permutation p p p.

The next line contains n n n integers a 1 , … , a n a_1,\dots,a_n a1,,an ( 1 ≤ a i ≤ 1 0 9 1\le a_i\le 10^9 1ai109) — elements of array a a a.

It is guaranteed that the sum of values of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each testcase output:

  • “Bodya” if Bodya wins the game.
  • “Sasha” if Sasha wins the game.
  • “Draw” if the players have the same score.

Example

Example

input
10
4 2 3 2
4 1 2 3
7 2 5 6
10 8 2 10
3 1 4 5 2 7 8 10 6 9
5 10 5 1 3 7 10 15 4 3
2 1000000000 1 2
1 2
4 4
8 10 4 1
5 1 4 3 2 8 6 7
1 1 2 1 2 100 101 102
5 1 2 5
1 2 4 5 3
4 6 9 4 2
4 2 3 1
4 1 3 2
6 8 5 3
6 9 5 4
6 1 3 5 2 4
6 9 8 9 5 10
4 8 4 2
2 3 4 1
5 2 8 7
4 2 3 1
4 1 3 2
6 8 5 3
2 1000000000 1 2
1 2
1000000000 2
output
Bodya
Sasha
Draw
Draw
Bodya
Sasha
Sasha
Sasha
Sasha
Bodya

Note

Below you can find the explanation for the first testcase, where the game consists of k = 2 k=2 k=2 turns.

TurnBodya’s positionBodya’s scoreBodya’s moveSasha’s positionSasha’s scoreSasha’s move
first 3 3 3 0 + a 3 = 0 + 5 = 5 0 + a_3 = 0 + 5 = 5 0+a3=0+5=5stays on the same position 2 2 2 0 + a 2 = 0 + 2 = 2 0 + a_2 = 0 + 2 = 2 0+a2=0+2=2moves to p 2 = 1 p_2=1 p2=1
second 3 3 3 5 + a 3 = 5 + 5 = 10 5 + a_3 = 5 + 5 = 10 5+a3=5+5=10stays on the same position 1 1 1 2 + a 1 = 2 + 7 = 9 2 + a_1 = 2 + 7 = 9 2+a1=2+7=9stays on the same position
final results 3 3 3 10 10 10 1 1 1 9 9 9

As we may see, Bodya’s score is greater, so he wins the game. It can be shown that Bodya always can win this game.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n, k, pb, ps;
int a[N], p[N];
int vis[N];void solve() {cin >> n >> k >> pb >> ps;for (int i = 1; i <= n; i ++)cin >> p[i];for (int i = 1; i <= n; i ++)cin >> a[i];int r1 = 0, tot = 0, r2 = 0, left = k;for (int i = 1; i <= n; i ++) vis[i] = 0;while (!vis[pb] && left) {vis[pb] = 1, tot += a[pb], left --;r1 = max(tot + left * a[pb], r1), pb = p[pb];}for (int i = 1; i <= n; i ++) vis[i] = 0;left = k, tot = 0;while (!vis[ps] && left) {vis[ps] = 1, tot += a[ps], left --;r2 = max(tot + left * a[ps], r2), ps = p[ps];}// cout << r1 << " " << r2 << endl;if (r1 == r2) cout << "Draw" << endl;else if (r1 > r2) cout << "Bodya" << endl;else cout << "Sasha" << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

E. Cells Arrangement

Problem Statement

You are given an integer n n n. You choose n n n cells ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) (x_1,y_1), (x_2,y_2),\dots,(x_n,y_n) (x1,y1),(x2,y2),,(xn,yn) in the grid n × n n\times n n×n where 1 ≤ x i ≤ n 1\le x_i\le n 1xin and 1 ≤ y i ≤ n 1\le y_i\le n 1yin.

Let H \mathcal{H} H be the set of distinct Manhattan distances between any pair of cells. Your task is to maximize the size of H \mathcal{H} H. Examples of sets and their construction are given in the notes.

If there exists more than one solution, you are allowed to output any.

Manhattan distance between cells ( x 1 , y 1 ) (x_1,y_1) (x1,y1) and ( x 2 , y 2 ) (x_2,y_2) (x2,y2) equals ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ |x_1-x_2|+|y_1-y_2| x1x2+y1y2.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 50 1\le t\le 50 1t50) — the number of test cases.

Each of the following t t t lines contains a single integer n n n ( 2 ≤ n ≤ 1 0 3 2\le n\le 10^3 2n103).

Output

For each test case, output n n n points which maximize the size of H \mathcal{H} H. It is not necessary to output an empty line at the end of the answer for each test case.

Example

Example

input
5
2
3
4
5
6
output
1 1
1 2

2 1
2 3
3 1

1 1
1 3
4 3
4 4

1 1
1 3
1 4
2 1
5 5

1 4
1 5
1 6
5 2
5 5
6 1

Note

In the first testcase we have n = 2 n=2 n=2. One of the possible arrangements is:

The arrangement with cells located in ( 1 , 1 ) (1,1) (1,1) and ( 1 , 2 ) (1,2) (1,2).

In this case H = { ∣ 1 − 1 ∣ + ∣ 1 − 1 ∣ , ∣ 1 − 1 ∣ + ∣ 2 − 2 ∣ , ∣ 1 − 1 ∣ + ∣ 1 − 2 ∣ } = { 0 , 0 , 1 } = { 0 , 1 } \mathcal{H}=\{|1-1|+|1-1|,|1-1|+|2-2|,|1-1|+|1-2|\}=\{0,0,1\}=\{0,1\} H={∣11∣+∣11∣,∣11∣+∣22∣,∣11∣+∣12∣}={0,0,1}={0,1}. Hence, the size of H \mathcal{H} H is 2 2 2. It can be shown that it is the greatest possible answer.

In the second testcase we have n = 3 n=3 n=3. The optimal arrangement is:

The arrangement with cells located in ( 2 , 1 ) (2,1) (2,1), ( 2 , 3 ) (2,3) (2,3) and ( 3 , 1 ) (3,1) (3,1).

H \mathcal{H} H= { ∣ 2 − 2 ∣ + ∣ 1 − 1 ∣ , ∣ 2 − 2 ∣ + ∣ 3 − 3 ∣ , ∣ 3 − 3 ∣ + ∣ 1 − 1 ∣ , ∣ 2 − 2 ∣ + ∣ 1 − 3 ∣ , ∣ 2 − 3 ∣ + ∣ 1 − 1 ∣ , ∣ 2 − 3 ∣ + ∣ 3 − 1 ∣ } \{|2-2|+|1-1|,|2-2|+|3-3|,|3-3|+|1-1|,|2-2|+|1-3|,|2-3|+|1-1|,|2-3|+|3-1|\} {∣22∣+∣11∣,∣22∣+∣33∣,∣33∣+∣11∣,∣22∣+∣13∣,∣23∣+∣11∣,∣23∣+∣31∣}= { 0 , 0 , 0 , 2 , 1 , 3 } \{0,0,0,2,1,3\} {0,0,0,2,1,3}= { 0 , 1 , 2 , 3 } \{0,1,2,3\} {0,1,2,3}.

For n = 4 n=4 n=4 a possible arrangement is:

For n = 5 n=5 n=5 a possible arrangement is:

For n = 6 n=6 n=6 a possible arrangement is:

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 7;int n;
bool vis[N][N], res[N][N];
int mx;void dfs(int u) {if (!u) {set<int> s;std::vector<PII> point;for (int i = 1; i <= n; i ++)for (int j = 1; j <= n; j ++)if (vis[i][j])point.emplace_back(i, j);for (auto i : point)for (auto j : point)s.insert(abs(i.fi - j.fi) + abs(i.se - j.se));if (s.size() > mx) {mx = s.size();memcpy(res, vis, sizeof vis);}return;}for (int i = 1; i <= n; i ++)for (int j = 1; j <= n; j ++)if (!vis[i][j]) {vis[i][j] = 1;dfs(u - 1);vis[i][j] = 0;}
}void solve() {cin >> n;if (n == 2) {cout << "1 2\n2 2\n";} else {for (int i = 1; i <= n - 2; i ++)cout << 1 << " " << i << endl;cout << 2 << " " << n << endl << n << " " << n << endl;}cout << endl;// set<int> s;// std::vector<PII> point;// int x, y;// for (int i = 1; i <= n; i ++)// 	cin >> x >> y, point.emplace_back(x, y);// for (auto i : point)// 	for (auto j : point)// 		s.insert(abs(i.fi - j.fi) + abs(i.se - j.se));// cout << s.size() << endl;// mx = 0;// dfs(n);// for (int i = 1; i <= n; i ++)// 	for (int j = 1; j <= n; j ++)// 		if (res[i][j])// 			cout << i << " " << j << endl;// cout << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

F. Equal XOR Segments

Problem Statement

Let us call an array x 1 , … , x m x_1,\dots,x_m x1,,xm interesting if it is possible to divide the array into k > 1 k>1 k>1 parts so that bitwise XOR of values from each part are equal.

More formally, you must split array x x x into k k k consecutive segments, each element of x x x must belong to exactly 1 1 1 segment. Let y 1 , … , y k y_1,\dots,y_k y1,,yk be the XOR of elements from each part respectively. Then y 1 = y 2 = ⋯ = y k y_1=y_2=\dots=y_k y1=y2==yk must be fulfilled.

For example, if x = [ 1 , 1 , 2 , 3 , 0 ] x = [1, 1, 2, 3, 0] x=[1,1,2,3,0], you can split it as follows: [ 1 ] , [ 1 ] , [ 2 , 3 , 0 ] [\color{blue}1], [\color{green}1], [\color{red}2, \color{red}3, \color{red}0] [1],[1],[2,3,0]. Indeed 1 = 1 = 2 ⊕ 3 ⊕ 0 \color{blue}1=\color{green}1=\color{red}2 \oplus \color{red}3\oplus \color{red}0 1=1=230.

You are given an array a 1 , … , a n a_1,\dots,a_n a1,,an. Your task is to answer q q q queries:

  • For fixed l l l, r r r, determine whether the subarray a l , a l + 1 , … , a r a_l,a_{l+1},\dots,a_r al,al+1,,ar is interesting.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1\le t\le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n and q q q ( 2 ≤ n ≤ 2 ⋅ 1 0 5 2 \le n \le 2 \cdot 10^5 2n2105, 1 ≤ q ≤ 2 ⋅ 1 0 5 1 \le q \le 2 \cdot 10^5 1q2105) — the number of elements in the array and the number of queries respectively.

The next line contains n n n integers a 1 , … , a n a_1,\dots,a_n a1,,an ( 0 ≤ a i < 2 30 0 \le a_i < 2^{30} 0ai<230) — elements of the array.

Each of the next q q q lines contains two integers l l l and r r r ( 1 ≤ l < r ≤ n 1 \le l < r \le n 1l<rn) describing the query.

It is guaranteed that the sum of n n n over all testcases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

It is guaranteed that the sum of q q q over all testcases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each query, output “YES” if the subarray is interesting and “NO” otherwise.

You can output “Yes” and “No” in any case (for example, the strings “yES”, “yes”, and “Yes” will be recognized as correct answers).

Example

input
4
5 5
1 1 2 3 0
1 5
2 4
3 5
1 3
3 4
5 5
1 2 3 4 5
1 5
2 4
3 5
1 3
2 3
7 4
12 9 10 9 10 11 9
1 5
1 7
2 6
2 7
11 4
0 0 1 0 0 1 0 1 1 0 1
1 2
2 5
6 9
7 11
output
YES
YES
NO
NO
NO

YES
NO
NO
YES
NO

NO
NO
NO
NO

YES
NO
YES
YES

Note

Explanation for the first test case:

The first query is described in the statement.

In the second query, we should divide [ 1 , 2 , 3 ] [1,2,3] [1,2,3]. A possible division is [ 1 , 2 ] , [ 3 ] [1,2],[3] [1,2],[3], since 1 ⊕ 2 = 3 1\oplus 2=3 12=3.

It can be shown that for queries 3 , 4 , 5 3,4,5 3,4,5, the subarrays are not interesting.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n, q;
int s[N];
map<int, vector<int>> p;void solve() {cin >> n >> q;for (int i = 1; i <= n; i ++)cin >> s[i], s[i] ^= s[i - 1], p[s[i]].emplace_back(i);while (q -- ){int l, r;cin >> l >> r;if ((s[r] ^ s[l - 1]) == 0) {cout << "YES" << endl;} else {auto it = lower_bound(p[s[r]].begin(), p[s[r]].end(), l);if (it == p[s[r]].end()) {cout << "NO" << endl;continue;}int t1 = *it;auto it2 = upper_bound(p[s[l - 1]].begin(), p[s[l - 1]].end(), t1);if (it2 == p[s[l - 1]].end()) {cout << "NO" << endl;continue;}int t2 = *it2;if (t1 < r && t2 < r) cout << "YES" << endl;else cout << "NO" << endl;}}p.clear();cout << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

G1. Division + LCP (easy version)

Problem Statement

This is the easy version of the problem. In this version l = r l=r l=r.

You are given a string s s s. For a fixed k k k, consider a division of s s s into exactly k k k continuous substrings w 1 , … , w k w_1,\dots,w_k w1,,wk. Let f k f_k fk be the maximal possible L C P ( w 1 , … , w k ) LCP(w_1,\dots,w_k) LCP(w1,,wk) among all divisions.

L C P ( w 1 , … , w m ) LCP(w_1,\dots,w_m) LCP(w1,,wm) is the length of the Longest Common Prefix of the strings w 1 , … , w m w_1,\dots,w_m w1,,wm.

For example, if s = a b a b a b c a b s=abababcab s=abababcab and k = 4 k=4 k=4, a possible division is a b a b a b c a b \color{red}{ab}\color{blue}{ab}\color{orange}{abc}\color{green}{ab} abababcab. The L C P ( a b , a b , a b c , a b ) LCP(\color{red}{ab},\color{blue}{ab},\color{orange}{abc},\color{green}{ab}) LCP(ab,ab,abc,ab) is 2 2 2, since a b ab ab is the Longest Common Prefix of those four strings. Note that each substring consists of a continuous segment of characters and each character belongs to exactly one substring.

Your task is to find f l , f l + 1 , … , f r f_l,f_{l+1},\dots,f_r fl,fl+1,,fr. In this version l = r l=r l=r.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n, l l l, r r r ( 1 ≤ l = r ≤ n ≤ 2 ⋅ 1 0 5 1 \le l = r \le n \le 2 \cdot 10^5 1l=rn2105) — the length of the string and the given range.

The second line of each test case contains string s s s of length n n n, all characters are lowercase English letters.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2\cdot 10^5 2105.

Output

For each test case, output r − l + 1 r-l+1 rl+1 values: f l , … , f r f_l,\dots,f_r fl,,fr.

Example

input
7
3 3 3
aba
3 3 3
aaa
7 2 2
abacaba
9 4 4
abababcab
10 1 1
codeforces
9 3 3
abafababa
5 3 3
zpozp
output
0
1
3
2
10
2
0

Note

In the first sample n = k n=k n=k, so the only division of a b a aba aba is a b a \color{red}a\color{blue}b\color{orange}a aba. The answer is zero, because those strings do not have a common prefix.

In the second sample, the only division is a a a \color{red}a\color{blue}a\color{orange}a aaa. Their longest common prefix is one.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n, k;
string s;
int ne[N];int check(int x) {string p = " ";for (int i = 1; i <= x; i ++)p += s[i];for (int i = 1; i <= n; i ++)ne[i] = 0;for (int i = 2, j = 0; i <= x; i ++) {while (j && p[j + 1] != p[i]) j = ne[j];if (p[j + 1] == p[i]) j ++;ne[i] = j;}std::vector<PII> res;for (int i = 1, j = 0; i <= n; i ++) {while (j && s[i] != p[j + 1]) j = ne[j];if (s[i] == p[j + 1]) j ++;if (j == x) {res.emplace_back(i - x + 1, i);j = ne[j];}}sort(res.begin(), res.end(), [&](PII a, PII b) {return a.se < b.se;});int ans = 0, ed = 0;for (int i = 0; i < res.size(); i ++)if (res[i].fi > ed) {ans ++;ed = res[i].se;}return ans;
}void solve() {cin >> n >> k >> k >> s;s = ' ' + s;int l = 0, r = n;while (l < r) {int mid = l + r + 1 >> 1;if (check(mid) >= k) l = mid;else r = mid - 1;}cout << l << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

G2. Division + LCP (hard version)

Problem Statement

This is the hard version of the problem. In this version l ≤ r l\le r lr.

You are given a string s s s. For a fixed k k k, consider a division of s s s into exactly k k k continuous substrings w 1 , … , w k w_1,\dots,w_k w1,,wk. Let f k f_k fk be the maximal possible L C P ( w 1 , … , w k ) LCP(w_1,\dots,w_k) LCP(w1,,wk) among all divisions.

L C P ( w 1 , … , w m ) LCP(w_1,\dots,w_m) LCP(w1,,wm) is the length of the Longest Common Prefix of the strings w 1 , … , w m w_1,\dots,w_m w1,,wm.

For example, if s = a b a b a b c a b s=abababcab s=abababcab and k = 4 k=4 k=4, a possible division is a b a b a b c a b \color{red}{ab}\color{blue}{ab}\color{orange}{abc}\color{green}{ab} abababcab. The L C P ( a b , a b , a b c , a b ) LCP(\color{red}{ab},\color{blue}{ab},\color{orange}{abc},\color{green}{ab}) LCP(ab,ab,abc,ab) is 2 2 2, since a b ab ab is the Longest Common Prefix of those four strings. Note that each substring consists of a continuous segment of characters and each character belongs to exactly one substring.

Your task is to find f l , f l + 1 , … , f r f_l,f_{l+1},\dots,f_r fl,fl+1,,fr.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n, l l l, r r r ( 1 ≤ l ≤ r ≤ n ≤ 2 ⋅ 1 0 5 1 \le l \le r \le n \le 2 \cdot 10^5 1lrn2105) — the length of the string and the given range.

The second line of each test case contains string s s s of length n n n, all characters are lowercase English letters.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2\cdot 10^5 2105.

Output

For each test case, output r − l + 1 r-l+1 rl+1 values: f l , … , f r f_l,\dots,f_r fl,,fr.

Example

input
7
3 1 3
aba
3 2 3
aaa
7 1 5
abacaba
9 1 6
abababcab
10 1 10
aaaaaaawac
9 1 9
abafababa
7 2 7
vvzvvvv
output
3 1 0
1 1
7 3 1 1 0
9 2 2 2 0 0
10 3 2 1 1 1 1 1 0 0
9 3 2 1 1 0 0 0 0
2 2 1 1 1 0

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n, L, R;
string s;
int ne[N], f[N];int check(int x) {if (f[x]) return f[x];string p = " ";for (int i = 1; i <= x; i ++)p += s[i];for (int i = 1; i <= n; i ++)ne[i] = 0;for (int i = 2, j = 0; i <= x; i ++) {while (j && p[j + 1] != p[i]) j = ne[j];if (p[j + 1] == p[i]) j ++;ne[i] = j;}int ans = 0, ed = 0;for (int i = 1, j = 0; i <= n; i ++) {while (j && s[i] != p[j + 1]) j = ne[j];if (s[i] == p[j + 1]) j ++;if (j == x) {if (i - x + 1 > ed) {ans ++;ed = i;}j = ne[j];}}// int ans = 0, ed = 0;// for (int i = 0; i < res.size(); i ++)// 	if (res[i].fi > ed) {// 		ans ++;// 		ed = res[i].se;// 	}return f[x] = ans;
}void solve() {cin >> n >> L >> R >> s;for (int i = 1; i <= n; i ++) f[i] = 0;s = ' ' + s;int res = n;for (int i = L; i <= R; i ++) {int l = 0, r = res;while (l < r) {int mid = l + r + 1 >> 1;if (check(mid) >= i) l = mid;else r = mid - 1;}res = l;cout << res << " ";}cout << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

视频讲解

Codeforces Round 943 (Div. 3)(A ~ G2 讲解)


最后祝大家早日在这里插入图片描述

这篇关于Codeforces Round 943 (Div. 3 ABCDEFG1G2题) 视频讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961400

相关文章

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

javascript fetch 用法讲解

《javascriptfetch用法讲解》fetch是一个现代化的JavaScriptAPI,用于发送网络请求并获取资源,它是浏览器提供的全局方法,可以替代传统的XMLHttpRequest,这篇... 目录1. 基本语法1.1 语法1.2 示例:简单 GET 请求2. Response 对象3. 配置请求

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

CSS引入方式和选择符的讲解和运用小结

《CSS引入方式和选择符的讲解和运用小结》CSS即层叠样式表,是一种用于描述网页文档(如HTML或XML)外观和格式的样式表语言,它主要用于将网页内容的呈现(外观)和结构(内容)分离,从而实现... 目录一、前言二、css 是什么三、CSS 引入方式1、行内样式2、内部样式表3、链入外部样式表四、CSS 选

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++