NYOJ119士兵杀敌(三)RMQ问题之ST…

2024-05-05 05:58
文章标签 问题 st rmq 杀敌 士兵 nyoj119

本文主要是介绍NYOJ119士兵杀敌(三)RMQ问题之ST…,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目地址
题目大意:求一段区间内的最大值和最小值的差值,查询次数非常大。
第一次接触RMQ类型的题目,在百度百科科普了一下。 RMQ问题
RMQ (Range Minimum/MaximumQuery)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题。
ST算法:
  首先是预处理,用一个DP解决。设a是要求 区间 最值的 数列 ,f[i,j]表示从第i个数起连续2^j个数中的最大值。例如数列32 4 5 6 8 1 2 9 7,f[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。f[1,2]=5,f[1,3]=8,f[2,0]=2,f[2,1]=4……从这里可以看出f[i,0]其实就等于a[i]。这样,DP的状态、初值都已经有了,剩下的就是 状态转移方程 。我们把f[i,j](j≥1)平均分成两段(因为j≥1时,f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5和6,8,1,2这两段。f就是这两段的最大值中的最大值。于是我们得到了动规方程F[i,j]=max(F[i,j-1],F[i+2^(j-1),j-1])。
接下来是得出最值,也许你想不到计算出f有什么用处,一般要想计算max还是要O(logn),甚至O(n)。但有一个很好的办法,做到了O(1)。还是分开来。如在上例中我们要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。扩展到一般情况,就是把区间[l,r]分成两个长度为2^n的区间(保证有f对应)。直接给出表达式:
k:=trunc(ln(r-l+1)/ln(2));
ans:=max(F[l,k],F[r-2^k+1,k]);
这样就计算了从l开始,长度为2^k的区间和从r-2^k+1开始长度为2^k的区间的最大值(表达式比较繁琐,细节问题如加1减1需要仔细考虑),二者中的较大者就是整个区间[l,r]上的最大值。
其实我个人觉得这个和树状数组十分的相似,树状数组是将数组的和预处理用二叉树存储,这个事将数组区间的最值用二维数组储存罢了。
解题代码:(百度百科的写的非常的经典,就稍微改了一点,直接过了)
#include<stdio.h>
#include<string.h>
#define MN 100008
using namespace std;
int mi[MN][17],mx[MN][17],w[MN];
int n,q;
int max(int a,int b){return a>b?a:b;
}
int min(int a,int b){return a>b?a:b;
}
void rmqinit()//初始化数组
{int i,j,m;for(i=1;i<=n;i++){mi[i][0]=mx[i][0]=w[i];}m=(int) floor(log2((double)n));for(i=1;i<=m;i++){for(j=n;j>=1;j--){mx[j][i]=mx[j][i-1];if(j+(1<<(i-1))<=n)mx[j][i]=max(mx[j][i],mx[j+(1<<(i-1))][i-1]);mi[j][i]=mi[j][i-1];if(j+(1<<(i-1)<=n))mi[j][i]=min(mi[j][i],mi[j+(1<<(i-1))][i-1]);}}
}
int rmqmin(int l,int r)//l,r区间的最小值
{int m=(int)floor(log2(double(r-l+1)));returnmin(mi[l][m],mi[r-(1<<m)+1][m]);
}int rmqmax(int l,int r)
{intm=(int)floor(log2(double(r-l+1)));returnmax(mx[l][m],mx[r-(1<<m)+1][m]);
}int main()
{scanf("%d%d",&n,&q);for(int i=1;i<=n;i++)scanf("%d",&w[i]);rmqinit();int l,r;for(int i=1;i<=q;i++){scanf("%d%d",&l,&r);printf("%d\n",rmqmax(l,r)-rmqmin(l,r));}return 0;
}



                                     不懂可以私信。

这篇关于NYOJ119士兵杀敌(三)RMQ问题之ST…的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/960937

相关文章

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复

VS配置好Qt环境之后但无法打开ui界面的问题解决

《VS配置好Qt环境之后但无法打开ui界面的问题解决》本文主要介绍了VS配置好Qt环境之后但无法打开ui界面的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目UKeLvb录找到Qt安装目录中designer.UKeLvBexe的路径找到vs中的解决方案资源

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

电脑蓝牙连不上怎么办? 5 招教你轻松修复Mac蓝牙连接问题的技巧

《电脑蓝牙连不上怎么办?5招教你轻松修复Mac蓝牙连接问题的技巧》蓝牙连接问题是一些Mac用户经常遇到的常见问题之一,在本文章中,我们将提供一些有用的提示和技巧,帮助您解决可能出现的蓝牙连接问... 蓝牙作为一种流行的无线技术,已经成为我们连接各种设备的重要工具。在 MAC 上,你可以根据自己的需求,轻松地

Java 中的跨域问题解决方法

《Java中的跨域问题解决方法》跨域问题本质上是浏览器的一种安全机制,与Java本身无关,但Java后端开发者需要理解其来源以便正确解决,下面给大家介绍Java中的跨域问题解决方法,感兴趣的朋友一起... 目录1、Java 中跨域问题的来源1.1. 浏览器同源策略(Same-Origin Policy)1.

如何清理MySQL中的binlog问题

《如何清理MySQL中的binlog问题》:本文主要介绍清理MySQL中的binlog问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目http://www.chinasem.cn录清理mysql中的binlog1.查看binlog过期时间2. 修改binlog过期

如何解决yum无法安装epel-release的问题

《如何解决yum无法安装epel-release的问题》:本文主要介绍如何解决yum无法安装epel-release的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录yum无法安装epel-release尝试了第一种方法第二种方法(我就是用这种方法解决的)总结yum

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File