[论文阅读] 测试时间自适应TTA

2024-05-04 23:04

本文主要是介绍[论文阅读] 测试时间自适应TTA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最初接触 CVPR2024 TEA: Test-time Energy Adaptation
[B站](1:35:00-1:53:00)https://www.bilibili.com/video/BV1wx4y1v7Jb/?spm_id_from=333.788&vd_source=145b0308ef7fee4449f12e1adb7b9de2
实现:

  1. 读取预训练好的模型参数
  2. 设计需要更新的模型参数,其他模块不进行梯度更新
  3. 设计辅助任务进行测试时间的模型更新

论文列表--待更新

  • Contrastive Test-Time Adaptation(CVPR 2022)
  • Improved Test-Time Adaptation for Domain Generalization(CVPR 2023)
  • SoTTA: Robust Test-Time Adaptation on Noisy Data Streams(NeurIPS 2023)
  • Feature Alignment and Uniformity for Test Time Adaptation(CVPR 2023)
  • A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts(arXiv 2023)
  • TEA: Test-time Energy Adaptation(CVPR 2024)

Contrastive Test-Time Adaptation(CVPR 2022)

缩写:CoTTA
在测试时适应过程中将自监督对比学习与自我训练相结合。
PDF Code
上图展示了不同的方法。说明方法 AdaContrast 如何利用目标域数据与以前的工作。(a) 如果不进行调整,就是普通训练,仅根据目标数据评估源模型。(b) 使用伪标签时,源分类器预测被用作自我训练的伪标签。(c)现有的伪标签方法SHOT使用离线全局细化来减少嘈杂的伪标签。(d)在AdaContrast中,我们考虑了目标样本之间的两种关系:我们使用对比学习来利用样本对中的信息来学习更好的目标表示,同时通过聚合邻域中的知识来完善伪标签。颜色表示伪标记的类。
这个方法是利用对比学习的Moco为基本框架。主要流程如下图所示。
对比测试时适应方法(AdaContrast)的框架:在适应开始时,模型和动量模型由源模型初始化。目标图像由一个弱增强和两个强增强转换。(a) 弱增强图像被编码为特征向量 w,用于根据与目标特征空间的余弦距离查找最近邻,该空间作为内存队列进行维护。对相关概率进行平均,然后进行 argmax 以获得用于自我训练和对比学习的精细伪标签 ˆ y。(b)将图像的两个强增强版本编码为动量对比度的查询和关键特征q,k[6,17],与自训练联合应用。不使用投影头;当前伪标签和历史伪标签用于排除同类负对。(c) 从弱增强图像中获得的伪标签 ˆ y 也用于监督强增强图像的预测,从而加强自训练中的弱-强一致性。多样性正则化也基于相同的预测。请注意,用于最近邻搜索和对比学习的队列是分开的,它们分别使用 w 和 k 进行更新(此处未说明)。
基本流程是:
对输入图片进行一次弱增强,两次强增强,分别输入到不同的编码器中。弱增强经过encoder得到的伪标签对强增强的输出进行监督。
弱图像增强获得的样本进入经过源模型参数初始化的encoder中获得概率分布,这个概率分布与内存队列中的概率分布计算距离,使用K个临近的概率分布的平均值作为当前样本的输出的概率分布,进行argmax变成用于自训练和对比学习的伪标签,然后当前样本的概率分布对内存队列进行更新。
两个强增强得到的输入进入Moco,一个是Encoder得到query,一个是momentum encoder得到key。momentum得到的key对key队列进行更新,利用伪标签的值mask相同类别的key,只是对不同类别进行对比学习(就是不会让正样本和正样本进行对比)。其余操作与Moco相同。
损失函数:weak aug输出作为伪标签进行监督的的CE Loss,一个CTR对比学习Loss,一个均匀分布Loss(防止错误的伪标签对模型造成不利影响,同时提高模型输出的多样性)

Improved Test-Time Adaptation for Domain Generalization(CVPR 2023)

PDF Code
目前TTA遇到的困难是:

  1. 辅助任务设计很困难,辅助任务设计不好,与原来损失如果不匹配,使用TTA性能会下降。目前大多设计一个看起来比较合理的辅助任务。
  2. 模型需要更新的参数设计也比较复杂,更新哪个模块设计比较困难。
    主要是应用一致性损失。
    ITTA的训练过程。我们使用源域中的 x 作为特征提取器 fθ(·) 的输入来获得表示 z 及其增强版本 z′,其中应用了 [74] 中的增强技能。分类器 fφ(·) 和权重子网 fw(·) 用于计算主损失 Lmain 和可学习一致性损失 Lwcont。详情请参阅我们的文字。
    ITTA的测试适配过程。与训练阶段不同的是,我们在特征提取器 fθ 的每个块之后都包含额外的自适应参数 fΘ。对于每个测试样本 x,从 f i θ 获得的中间表示 zi 和 z′i 在进入下一个块 f i+1 θ 之前传递到 f i Θ。我们使用可学习的一致性损失 Lwcont 作为更新 fΘ 的目标。详情请参阅我们的文字。
    在每个block后面加入自适应模块。改动模块的激活层得到两个不同的特征,这两个特征的差经过fw之后要接近于0。其中胖一点的Θ是要更新的参数,瘦一点的θ是模型原来的参数这个是不在测试时间进行改变的。

SoTTA: Robust Test-Time Adaptation on Noisy Data Streams(NeurIPS 2023)

PDF Code
观察:如果测试集中有noise、对抗性样本等,TTA的性能会直线下降。
问题:现有的TTA方法都无可避免的适应了混杂在测试数据中的不好的样本,导致模型性能下降。
与先前的假设(Clean TTA)不同,真实世界的测试流可能包括模型范围之外的意外噪声样本(噪声TTA),例如眩光、覆盖镜头的落叶、看不见的物体(例如火烈鸟)以及自动驾驶场景中的噪声。在这种情况下,现有 TTA 方法的准确性会降低。现有 TTA 方法和我们的方法 (SoTTA) 在 CIFAR10-C 上的平均分类准确率 (%)。与原始数据相比,当嘈杂的数据混合到测试流中(嘈杂)时,现有方法的性能会下降
SoTTA概述。SoTTA 通过高置信度统一类采样 (HUS) 实现输入鲁棒性,通过熵锐度最小化 (ESM) 实现参数鲁棒性。
创新点:

  1. 高置信度均匀采样,选取良性样本进行memory更新。
  2. 熵锐度最小化,实现模型参数鲁棒性。
    观察:噪声样本和良性样本的区别可以通过模型输出观察到。
    memory更新:对数据进行筛选更新,保持memory中样本类别相对平衡有代表性,噪声低。
    Loss函数:熵的一阶泰勒,使模型扰动前后保持不变。

Feature Alignment and Uniformity for Test Time Adaptation(CVPR 2023)

PDF Code
缩写:TSD
测试时间自蒸馏
首先将 TTA 作为功能修订问题来解决,因为源域和目标域之间存在域间隙。之后,按照两个测量对齐和均匀性来讨论测试时间特征修订。对于测试时间特征的均匀性,提出了一种测试时间自蒸馏策略,以保证当前批次和之前所有批次表示之间的均匀性一致性。对于测试时特征对齐,提出了一种记忆空间局部聚类策略,以对齐即将到来的批次的邻域样本之间的表示。为了解决常见的噪声标签问题,提出了熵和一致性滤波器来选择和删除可能的噪声标签。
我们提出的方法概述。蓝线表示向前和向后,黑线仅表示向前(即没有梯度反向传播)。不同颜色的特征、日志和原型意味着不同的类别。MSLC:记忆空间局部聚类。TSD:测试时间自蒸馏。
分类模型与原型模型输出的一致性。
我的理解,MSLC是对原型分类模型中的feature和Logits进行更新(更新原型向量,如果分类预测与原型预测一致,则让临近的原型向量与当前得到的特征更加接近,否则就远离,动量更新),TSD是计算分类模型和原型模型输出的一致性损失(为了防止原型模型输出的噪声先经过过滤器再计算CE Loss)。

A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts(arXiv 2023)

PDF github综述(没看完)
在这里插入图片描述
TTT:有Training data,可以改变模型训练的策略,重新训练一个新的模型。
TTA:只有预训练好的模型和测试数据。
这篇综述也说了一些相关的领域,比如自监督、半监督、领域泛化、领域适应、测试增强、迁移学习、持续学习等,对概念理解有帮助。
在这里插入图片描述
在这里插入图片描述
因为之后主要研究无源域自适应所以,只把无源域自适应部分进行整理。
在这里插入图片描述
在这里插入图片描述

TEA: Test-time Energy Adaptation(CVPR 2024)

PDF Code
缩写:TEA
观察:Test data的能量越低,测试的准确率越高。
在这里插入图片描述

在这里插入图片描述
让模型自行感知,以降低测试样本的能量,提高模型的泛化能力。

  1. 把分类器做成一个能量模型。
  2. 从模型中采样能量低的伪样本,提高伪样本的能量,降低测试数据的能量。
    看代码就是:从模型中采样能量低的伪样本,初始化得到一个输入,进入模型中得到梯度,根据梯度更新获得大致的局部最小值,作为伪样本,也就是模型中能量低的样本。

这篇关于[论文阅读] 测试时间自适应TTA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960290

相关文章

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

全解析CSS Grid 的 auto-fill 和 auto-fit 内容自适应

《全解析CSSGrid的auto-fill和auto-fit内容自适应》:本文主要介绍了全解析CSSGrid的auto-fill和auto-fit内容自适应的相关资料,详细内容请阅读本文,希望能对你有所帮助... css  Grid 的 auto-fill 和 auto-fit/* 父元素 */.gri

JavaScript时间戳与时间的转化常用方法

《JavaScript时间戳与时间的转化常用方法》在JavaScript中,时间戳(Timestamp)通常指Unix时间戳,即从1970年1月1日00:00:00UTC到某个时间点经过的毫秒数,下面... 目录1. 获取当前时间戳2. 时间戳 → 时间对象3. 时间戳php → 格式化字符串4. 时间字符

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及