[论文阅读] 测试时间自适应TTA

2024-05-04 23:04

本文主要是介绍[论文阅读] 测试时间自适应TTA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最初接触 CVPR2024 TEA: Test-time Energy Adaptation
[B站](1:35:00-1:53:00)https://www.bilibili.com/video/BV1wx4y1v7Jb/?spm_id_from=333.788&vd_source=145b0308ef7fee4449f12e1adb7b9de2
实现:

  1. 读取预训练好的模型参数
  2. 设计需要更新的模型参数,其他模块不进行梯度更新
  3. 设计辅助任务进行测试时间的模型更新

论文列表--待更新

  • Contrastive Test-Time Adaptation(CVPR 2022)
  • Improved Test-Time Adaptation for Domain Generalization(CVPR 2023)
  • SoTTA: Robust Test-Time Adaptation on Noisy Data Streams(NeurIPS 2023)
  • Feature Alignment and Uniformity for Test Time Adaptation(CVPR 2023)
  • A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts(arXiv 2023)
  • TEA: Test-time Energy Adaptation(CVPR 2024)

Contrastive Test-Time Adaptation(CVPR 2022)

缩写:CoTTA
在测试时适应过程中将自监督对比学习与自我训练相结合。
PDF Code
上图展示了不同的方法。说明方法 AdaContrast 如何利用目标域数据与以前的工作。(a) 如果不进行调整,就是普通训练,仅根据目标数据评估源模型。(b) 使用伪标签时,源分类器预测被用作自我训练的伪标签。(c)现有的伪标签方法SHOT使用离线全局细化来减少嘈杂的伪标签。(d)在AdaContrast中,我们考虑了目标样本之间的两种关系:我们使用对比学习来利用样本对中的信息来学习更好的目标表示,同时通过聚合邻域中的知识来完善伪标签。颜色表示伪标记的类。
这个方法是利用对比学习的Moco为基本框架。主要流程如下图所示。
对比测试时适应方法(AdaContrast)的框架:在适应开始时,模型和动量模型由源模型初始化。目标图像由一个弱增强和两个强增强转换。(a) 弱增强图像被编码为特征向量 w,用于根据与目标特征空间的余弦距离查找最近邻,该空间作为内存队列进行维护。对相关概率进行平均,然后进行 argmax 以获得用于自我训练和对比学习的精细伪标签 ˆ y。(b)将图像的两个强增强版本编码为动量对比度的查询和关键特征q,k[6,17],与自训练联合应用。不使用投影头;当前伪标签和历史伪标签用于排除同类负对。(c) 从弱增强图像中获得的伪标签 ˆ y 也用于监督强增强图像的预测,从而加强自训练中的弱-强一致性。多样性正则化也基于相同的预测。请注意,用于最近邻搜索和对比学习的队列是分开的,它们分别使用 w 和 k 进行更新(此处未说明)。
基本流程是:
对输入图片进行一次弱增强,两次强增强,分别输入到不同的编码器中。弱增强经过encoder得到的伪标签对强增强的输出进行监督。
弱图像增强获得的样本进入经过源模型参数初始化的encoder中获得概率分布,这个概率分布与内存队列中的概率分布计算距离,使用K个临近的概率分布的平均值作为当前样本的输出的概率分布,进行argmax变成用于自训练和对比学习的伪标签,然后当前样本的概率分布对内存队列进行更新。
两个强增强得到的输入进入Moco,一个是Encoder得到query,一个是momentum encoder得到key。momentum得到的key对key队列进行更新,利用伪标签的值mask相同类别的key,只是对不同类别进行对比学习(就是不会让正样本和正样本进行对比)。其余操作与Moco相同。
损失函数:weak aug输出作为伪标签进行监督的的CE Loss,一个CTR对比学习Loss,一个均匀分布Loss(防止错误的伪标签对模型造成不利影响,同时提高模型输出的多样性)

Improved Test-Time Adaptation for Domain Generalization(CVPR 2023)

PDF Code
目前TTA遇到的困难是:

  1. 辅助任务设计很困难,辅助任务设计不好,与原来损失如果不匹配,使用TTA性能会下降。目前大多设计一个看起来比较合理的辅助任务。
  2. 模型需要更新的参数设计也比较复杂,更新哪个模块设计比较困难。
    主要是应用一致性损失。
    ITTA的训练过程。我们使用源域中的 x 作为特征提取器 fθ(·) 的输入来获得表示 z 及其增强版本 z′,其中应用了 [74] 中的增强技能。分类器 fφ(·) 和权重子网 fw(·) 用于计算主损失 Lmain 和可学习一致性损失 Lwcont。详情请参阅我们的文字。
    ITTA的测试适配过程。与训练阶段不同的是,我们在特征提取器 fθ 的每个块之后都包含额外的自适应参数 fΘ。对于每个测试样本 x,从 f i θ 获得的中间表示 zi 和 z′i 在进入下一个块 f i+1 θ 之前传递到 f i Θ。我们使用可学习的一致性损失 Lwcont 作为更新 fΘ 的目标。详情请参阅我们的文字。
    在每个block后面加入自适应模块。改动模块的激活层得到两个不同的特征,这两个特征的差经过fw之后要接近于0。其中胖一点的Θ是要更新的参数,瘦一点的θ是模型原来的参数这个是不在测试时间进行改变的。

SoTTA: Robust Test-Time Adaptation on Noisy Data Streams(NeurIPS 2023)

PDF Code
观察:如果测试集中有noise、对抗性样本等,TTA的性能会直线下降。
问题:现有的TTA方法都无可避免的适应了混杂在测试数据中的不好的样本,导致模型性能下降。
与先前的假设(Clean TTA)不同,真实世界的测试流可能包括模型范围之外的意外噪声样本(噪声TTA),例如眩光、覆盖镜头的落叶、看不见的物体(例如火烈鸟)以及自动驾驶场景中的噪声。在这种情况下,现有 TTA 方法的准确性会降低。现有 TTA 方法和我们的方法 (SoTTA) 在 CIFAR10-C 上的平均分类准确率 (%)。与原始数据相比,当嘈杂的数据混合到测试流中(嘈杂)时,现有方法的性能会下降
SoTTA概述。SoTTA 通过高置信度统一类采样 (HUS) 实现输入鲁棒性,通过熵锐度最小化 (ESM) 实现参数鲁棒性。
创新点:

  1. 高置信度均匀采样,选取良性样本进行memory更新。
  2. 熵锐度最小化,实现模型参数鲁棒性。
    观察:噪声样本和良性样本的区别可以通过模型输出观察到。
    memory更新:对数据进行筛选更新,保持memory中样本类别相对平衡有代表性,噪声低。
    Loss函数:熵的一阶泰勒,使模型扰动前后保持不变。

Feature Alignment and Uniformity for Test Time Adaptation(CVPR 2023)

PDF Code
缩写:TSD
测试时间自蒸馏
首先将 TTA 作为功能修订问题来解决,因为源域和目标域之间存在域间隙。之后,按照两个测量对齐和均匀性来讨论测试时间特征修订。对于测试时间特征的均匀性,提出了一种测试时间自蒸馏策略,以保证当前批次和之前所有批次表示之间的均匀性一致性。对于测试时特征对齐,提出了一种记忆空间局部聚类策略,以对齐即将到来的批次的邻域样本之间的表示。为了解决常见的噪声标签问题,提出了熵和一致性滤波器来选择和删除可能的噪声标签。
我们提出的方法概述。蓝线表示向前和向后,黑线仅表示向前(即没有梯度反向传播)。不同颜色的特征、日志和原型意味着不同的类别。MSLC:记忆空间局部聚类。TSD:测试时间自蒸馏。
分类模型与原型模型输出的一致性。
我的理解,MSLC是对原型分类模型中的feature和Logits进行更新(更新原型向量,如果分类预测与原型预测一致,则让临近的原型向量与当前得到的特征更加接近,否则就远离,动量更新),TSD是计算分类模型和原型模型输出的一致性损失(为了防止原型模型输出的噪声先经过过滤器再计算CE Loss)。

A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts(arXiv 2023)

PDF github综述(没看完)
在这里插入图片描述
TTT:有Training data,可以改变模型训练的策略,重新训练一个新的模型。
TTA:只有预训练好的模型和测试数据。
这篇综述也说了一些相关的领域,比如自监督、半监督、领域泛化、领域适应、测试增强、迁移学习、持续学习等,对概念理解有帮助。
在这里插入图片描述
在这里插入图片描述
因为之后主要研究无源域自适应所以,只把无源域自适应部分进行整理。
在这里插入图片描述
在这里插入图片描述

TEA: Test-time Energy Adaptation(CVPR 2024)

PDF Code
缩写:TEA
观察:Test data的能量越低,测试的准确率越高。
在这里插入图片描述

在这里插入图片描述
让模型自行感知,以降低测试样本的能量,提高模型的泛化能力。

  1. 把分类器做成一个能量模型。
  2. 从模型中采样能量低的伪样本,提高伪样本的能量,降低测试数据的能量。
    看代码就是:从模型中采样能量低的伪样本,初始化得到一个输入,进入模型中得到梯度,根据梯度更新获得大致的局部最小值,作为伪样本,也就是模型中能量低的样本。

这篇关于[论文阅读] 测试时间自适应TTA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960290

相关文章

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法

《golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法》:本文主要介绍golang获取当前时间、时间戳和时间字符串及它们之间的相互转换,本文通过实例代码给大家介绍的非常详细,感兴趣... 目录1、获取当前时间2、获取当前时间戳3、获取当前时间的字符串格式4、它们之间的相互转化上篇文章给大家介

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时