C++中的reverse_iterator迭代器结构设计

2024-05-04 22:44

本文主要是介绍C++中的reverse_iterator迭代器结构设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

reverse_iterator迭代器结构设计

reverse_iterator迭代器基本结构设计

operator*()函数

operator++()函数

operator->()函数

operator!=()函数

rbegin()函数

rend()函数

operator--()函数

operator==()函数

测试代码

const_reverse_iterator迭代器设计

reverse_iterator迭代器结构设计思路改进


reverse_iterator迭代器结构设计

前面的list类以及vector类设计了正向迭代器,现在考虑设计反向迭代器,常规的设计思路为单独为反向迭代器建一个新类,这个类中所有的函数全部重新设计,这种思路可取但是并不高效,可以考虑下面的设计思路:

前面了解到了容器适配器,那么是否也可以把正向迭代器设置为反向迭代器的容器适配器从而实现反向迭代器的效果

对于此时的反向迭代器类设计即为如下:

以list类为例

reverse_iterator迭代器基本结构设计

//反向迭代器template<classIterator>class_list_reverse_iterator{typedef_list_reverse_iterator self;//使用正向迭代器构造反向迭代器_list_reverse_iterator(Iterator it):_it(it){}​private:Iterator_it;};

operator*()函数

首先是对于operator*()函数来说,解引用操作符获得的结果即为指针当前指向中的内容,而在正向迭代器中,解引用操作符也是同样的作用,所以此处可以复用正向迭代器的解引用操作符,但是此处是Iterator类对象,所以不能使用传统的直接对内置类型解引用的方式,但是可以考虑直接调用Iterator类中的operator*()函数

对于返回值来说,可以考虑和设计const版本的正向迭代器思路一致,使用模板参数区分传递T&T*

所以修改原来的类定义为:

//反向迭代器template<class Iterator, class Ref, class Ptr>class _list_reverse_iterator{typedef _list_reverse_iterator self;//使用正向迭代器构造反向迭代器_list_reverse_iterator(Iterator it):_it(it){}​private:Iterator _it;};

此时的operator*()函数即为如下设计:

//operator*()函数Ref operator*(){return _it.operator*();}

operator++()函数

对于前置++运算符来说,不同于正向迭代器,因为正向迭代器++是从第一个有效数据节点开始一直到头节点结束,而对于反向迭代器来说,其++是从最后一个有效数据节点开始向前一直到头节点结束,如下图所示:

但是可以考虑通过正向迭代器适配出反向迭代器,具体思路如下:

begin()放置在最后一个有效数据节点的位置,即end()-1的位置,将end()放在头节点的位置即可

所以,operator++()函数可以设计为

//operator++()函数
self& operator++()
{--_it;return *this;
}

operator->()函数

operator*()函数一样,调用Iterator中的operator->()函数即可

//operator->()函数Ptr operator->(){return _it.operator->();}

operator!=()函数

同正向迭代器中的设计思路一致

//operator!=()函数
bool operator!=(self& s)
{return _it != s._it;
}

rbegin()函数

//rbegin()函数——反向——非const版本
reverse_iterator rbegin()
{//因为正向迭代器中没有重载-,所以使用--代替return reverse_iterator(--end());
}

rend()函数

//rend()函数——反向——非const版本
reverse_iterator rend()
{return reverse_iterator(end());
}

operator--()函数

//operator--()函数
self& operator--()
{++_it;return *this;
}

operator==()函数

//operator==()函数
bool operator==(const self& s)
{return _it == s._it;
}

测试代码

此时基本的反向迭代器框架已经搭建完成,下面是测试代码:

void test_reverse_iterator()
{sim_list::list<int> ls;ls.push_back(1);ls.push_back(2);ls.push_back(3);ls.push_back(4);ls.push_back(5);sim_list::list<int>::reverse_iterator rit = ls.rbegin();while (rit != ls.rend()){cout << *rit << " ";++rit;}
}

const_reverse_iterator迭代器设计

对于const_reverse_iterator设计来说,不需要更改reverse_iterator迭代器的结构,只需要在list类中重定义一个const版本即可

typedef _list_reverse_iterator<iterator, T&, T*> reverse_iterator;// 反向迭代器——非const版本
typedef _list_reverse_iterator<iterator, const T&, const T*> const_reverse_iterator // 反向迭代器——const版本

并且将rbegin()rend()分别重载一个const版本

//rbegin()函数——反向——const版本
reverse_iterator rbegin() const
{//因为正向迭代器中没有重载-,所以使用--代替//注意end()此处是常量,但是此处是调用了operator--(),所以可以调用(编译器对const类型能调用普通函数的优化),如果是内置指针类型则必须写成end()-1return reverse_iterator(--end());
}//rend()函数——反向——const版本
reverse_iterator rend() const
{return reverse_iterator(end());
}

reverse_iterator迭代器结构设计思路改进

前面在设计reverse_iterator迭代器时,直接考虑的rbegin()函数的位置在最后一个有效节点的位置,而rend()在则在end()的位置,这样的思路并没有错误,但是参照SGI版本中的设计:

rbegin()rend()设计

可以看出,SGI版本在设计rbegin()rend()时考虑到和begin()end()形成了一种对称关系,如下图所示:

那么此时SGI版本中的反向迭代器是如何处理operator*()函数的

配合rbegin()rend()遍历思路如下:

取出上一个有效节点的数据,因为rbegin()在头节点的位置,所以先取出最后一个节点的数据,迭代器--操作到最后一个有效节点,一直到rend()位置结束

参考完SGI版本的迭代器设计,此时可以对上面的设计进行优化为SGI版本

//operator*()函数
Ref operator*()
{Iterator cur = _it;//如果不实现--,也可以用-1来代替return *(--cur);
}//rbegin()函数——反向——非const版本
reverse_iterator rbegin()
{//因为正向迭代器中没有重载-,所以使用--代替return reverse_iterator(end());
}//rend()函数——反向——非const版本
reverse_iterator rend()
{return reverse_iterator(begin());
}//rbegin()函数——反向——const版本
reverse_iterator rbegin() const
{//因为正向迭代器中没有重载-,所以使用--代替return reverse_iterator(end());
}//rend()函数——反向——const版本
reverse_iterator rend() const
{return reverse_iterator(begin());
}

此时对于operator->()函数来说,则需要换一个实现思路:直接取当前operator*()结果的地址

//operator->()函数
Ptr operator->()
{return &(operator*());
}

这篇关于C++中的reverse_iterator迭代器结构设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960254

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基