C++11 并发指南一(atomic 类型详解一 atomic_flag 介绍)

2024-05-04 22:38

本文主要是介绍C++11 并发指南一(atomic 类型详解一 atomic_flag 介绍),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:http://www.cnblogs.com/haippy/p/3252056.html 


C++11 并发指南已经写了 5 章,前五章重点介绍了多线程编程方面的内容,但大部分内容只涉及多线程、互斥量、条件变量和异步编程相关的 API,C++11 程序员完全可以不必知道这些 API 在底层是如何实现的,只需要清楚 C++11 多线程和异步编程相关 API 的语义,然后熟加练习即可应付大部分多线程编码需求。但是在很多极端的场合下为了性能和效率,我们需要开发一些 lock-free 的算法和数据结构,前面几章的内容可能就派不上用场了,因此从本文开始介绍 C++11 标准中 <atomic> 头文件里面的类和相关函数。

本文介绍 <atomic> 头文件中最简单的原子类型: atomic_flag。atomic_flag 一种简单的原子布尔类型,只支持两种操作,test-and-set 和 clear。

std::atomic_flag 构造函数

std::atomic_flag 构造函数如下:

  • atomic_flag() noexcept = default;
  • atomic_flag (const atomic_flag&T) = delete;

std::atomic_flag 只有默认构造函数,拷贝构造函数已被禁用,因此不能从其他的 std::atomic_flag 对象构造一个新的 std::atomic_flag 对象。

如果在初始化时没有明确使用 ATOMIC_FLAG_INIT初始化,那么新创建的 std::atomic_flag 对象的状态是未指定的(unspecified)(既没有被 set 也没有被 clear。)另外,atomic_flag不能被拷贝,也不能 move 赋值。

ATOMIC_FLAG_INIT: 如果某个 std::atomic_flag 对象使用该宏初始化,那么可以保证该 std::atomic_flag 对象在创建时处于 clear 状态。

下面先看一个简单的例子,main() 函数中创建了 10 个线程进行计数,率先完成计数任务的线程输出自己的 ID,后续完成计数任务的线程不会输出自身 ID:

复制代码
#include <iostream>              // std::cout
#include <atomic>                // std::atomic, std::atomic_flag, ATOMIC_FLAG_INIT
#include <thread>                // std::thread, std::this_thread::yield
#include <vector>                // std::vector

std::atomic<bool> ready(false);    // can be checked without being set
std::atomic_flag winner = ATOMIC_FLAG_INIT;    // always set when checkedvoid count1m(int id)
{while (!ready) {std::this_thread::yield();} // 等待主线程中设置 ready 为 true.for (int i = 0; i < 1000000; ++i) {} // 计数.// 如果某个线程率先执行完上面的计数过程,则输出自己的 ID.// 此后其他线程执行 test_and_set 是 if 语句判断为 false,// 因此不会输出自身 ID.if (!winner.test_and_set()) {std::cout << "thread #" << id << " won!\n";}
};int main()
{std::vector<std::thread> threads;std::cout << "spawning 10 threads that count to 1 million...\n";for (int i = 1; i <= 10; ++i)threads.push_back(std::thread(count1m, i));ready = true;for (auto & th:threads)th.join();return 0;
}
复制代码

多次执行结果如下:

复制代码
atomic ) ./Atomic-Flag1 
spawning 10 threads that count to 1 million...
thread #6 won!
atomic ) ./Atomic-Flag1 
spawning 10 threads that count to 1 million...
thread #1 won!
atomic ) ./Atomic-Flag1 
spawning 10 threads that count to 1 million...
thread #5 won!
atomic ) ./Atomic-Flag1 
spawning 10 threads that count to 1 million...
thread #1 won!
atomic ) ./Atomic-Flag1 
spawning 10 threads that count to 1 million...
thread #1 won!
atomic ) ./Atomic-Flag1 
spawning 10 threads that count to 1 million...
thread #10 won!
复制代码

std::atomic_flag::test_and_set 介绍

std::atomic_flag 的 test_and_set 函数原型如下:

bool test_and_set (memory_order sync = memory_order_seq_cst) volatile noexcept;
bool test_and_set (memory_order sync = memory_order_seq_cst) noexcept;

test_and_set() 函数检查 std::atomic_flag 标志,如果 std::atomic_flag 之前没有被设置过,则设置 std::atomic_flag 的标志,并返回先前该 std::atomic_flag 对象是否被设置过,如果之前 std::atomic_flag 对象已被设置,则返回 true,否则返回 false。

test-and-set 操作是原子的(因此 test-and-set 是原子 read-modify-write (RMW)操作)。

test_and_set 可以指定 Memory Order(后续的文章会详细介绍 C++11 的 Memory Order,此处为了完整性列出 test_and_set 参数 sync 的取值),取值如下:

 

Memory Order 值 Memory Order 类型
memory_order_relaxed Relaxed
memory_order_consume Consume
memory_order_acquire Acquire
memory_order_release Release
memory_order_acq_rel Acquire/Release
memory_order_seq_cst Sequentially consistent

 一个简单的例子:

复制代码
#include <iostream>                // std::cout
#include <atomic>                // std::atomic_flag
#include <thread>                // std::thread
#include <vector>                // std::vector
#include <sstream>                // std::stringstream

std::atomic_flag lock_stream = ATOMIC_FLAG_INIT;
std::stringstream stream;void append_number(int x)
{while (lock_stream.test_and_set()) {}stream << "thread #" << x << '\n';lock_stream.clear();
}int main()
{std::vector < std::thread > threads;for (int i = 1; i <= 10; ++i)threads.push_back(std::thread(append_number, i));for (auto & th:threads)th.join();std::cout << stream.str() << std::endl;;return 0;
}
复制代码

执行结果如下:

复制代码
thread #1
thread #2
thread #3
thread #4
thread #5
thread #6
thread #7
thread #8
thread #9
thread #10
复制代码

std::atomic_flag::clear() 介绍

清除 std::atomic_flag 对象的标志位,即设置 atomic_flag 的值为 false。clear 函数原型如下:

void clear (memory_order sync = memory_order_seq_cst) volatile noexcept;
void clear (memory_order sync = memory_order_seq_cst) noexcept;

清除 std::atomic_flag 标志使得下一次调用 std::atomic_flag::test_and_set 返回 false。

std::atomic_flag::clear() 可以指定 Memory Order(后续的文章会详细介绍 C++11 的 Memory Order,此处为了完整性列出 clear 参数 sync 的取值),取值如下:

 

Memory Order 值 Memory Order 类型
memory_order_relaxed Relaxed
memory_order_consume Consume
memory_order_acquire Acquire
memory_order_release Release
memory_order_acq_rel Acquire/Release
memory_order_seq_cst Sequentially consistent

结合 std::atomic_flag::test_and_set() 和 std::atomic_flag::clear(),std::atomic_flag 对象可以当作一个简单的自旋锁使用,请看下例:

复制代码
#include <thread>
#include <vector>
#include <iostream>
#include <atomic>std::atomic_flag lock = ATOMIC_FLAG_INIT;void f(int n)
{for (int cnt = 0; cnt < 100; ++cnt) {while (lock.test_and_set(std::memory_order_acquire))  // acquire lock; // spinstd::cout << "Output from thread " << n << '\n';lock.clear(std::memory_order_release);               // release lock
    }
}int main()
{std::vector<std::thread> v;for (int n = 0; n < 10; ++n) {v.emplace_back(f, n);}for (auto& t : v) {t.join();}
}
复制代码

在上面的程序中,std::atomic_flag 对象 lock 的上锁操作可以理解为 lock.test_and_set(std::memory_order_acquire); (此处指定了 Memory Order,更多有关 Memory Order 的概念,我会在后续的文章中介绍),解锁操作相当与 lock.clear(std::memory_order_release)。

在上锁的时候,如果 lock.test_and_set 返回 false,则表示上锁成功(此时 while 不会进入自旋状态),因为此前 lock 的标志位为 false(即没有线程对 lock 进行上锁操作),但调用 test_and_set 后 lock 的标志位为 true,说明某一线程已经成功获得了 lock 锁。

如果在该线程解锁(即调用 lock.clear(std::memory_order_release)) 之前,另外一个线程也调用 lock.test_and_set(std::memory_order_acquire) 试图获得锁,则 test_and_set(std::memory_order_acquire) 返回 true,则 while 进入自旋状态。如果获得锁的线程解锁(即调用了 lock.clear(std::memory_order_release))之后,某个线程试图调用 lock.test_and_set(std::memory_order_acquire) 并且返回 false,则 while 不会进入自旋,此时表明该线程成功地获得了锁。

按照上面的分析,我们知道在某种情况下 std::atomic_flag 对象可以当作一个简单的自旋锁使用。


这篇关于C++11 并发指南一(atomic 类型详解一 atomic_flag 介绍)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960248

相关文章

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志